Your browser doesn't support javascript.
loading
Mitochondrial Calcium Ion Nanogluttons Alleviate Periodontitis via Controlling mPTPs.
He, Ping; Liu, Fengyi; Li, Mingzheng; Ren, Mingxing; Wang, Xu; Deng, Yangjia; Wu, Xianghao; Li, Yuzhou; Yang, Sheng; Song, Jinlin.
Afiliação
  • He P; College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
  • Liu F; Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
  • Li M; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.
  • Ren M; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
  • Wang X; Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
  • Deng Y; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.
  • Wu X; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
  • Li Y; College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
  • Yang S; College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
  • Song J; College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
Adv Healthc Mater ; 12(15): e2203106, 2023 06.
Article em En | MEDLINE | ID: mdl-36906927
ABSTRACT
The mitochondrial permeability transition (mPT) directly affects mitochondrial function in macrophages. Under inflammatory conditions, mitochondrial calcium ion (mitoCa2+ ) overload triggers the persistent opening of mPT pores (mPTPs), further aggravating Ca2+ overload and increasing reactive oxygen species (ROS) to form an adverse cycle. However, there are currently no effective drugs targeting mPTPs to confine or unload excess Ca2+ . It is novelly demonstrated that the initiation of periodontitis and the activation of proinflammatory macrophages depend on the persistent overopening of mPTPs, which is mainly triggered by mitoCa2+ overload and facilitates further mitochondrial ROS leakage into the cytoplasm. To solve the above problems, mitochondrial-targeted "nanogluttons" with PEG-TPP conjugated to the surface of PAMAM and BAPTA-AM encapsulated in the core are designed. These nanogluttons can efficiently "glut" Ca2+ around and inside mitochondria to effectively control the sustained opening of mPTPs. As a result, the nanogluttons significantly inhibit the inflammatory activation of macrophages. Further studies also unexpectedly reveal that the alleviation of local periodontal inflammation in mice is accompanied by diminished osteoclast activity and reduced bone loss. This provides a promising strategy for mitochondria-targeted intervention in inflammatory bone loss in periodontitis and can be extended to treat other chronic inflammatory diseases associated with mitoCa2+ overload.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Periodontite / Cálcio Limite: Animals Idioma: En Revista: Adv Healthc Mater Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Periodontite / Cálcio Limite: Animals Idioma: En Revista: Adv Healthc Mater Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China