Your browser doesn't support javascript.
loading
Mapping cellular responses to DNA double-strand breaks using CRISPR technologies.
Liu, Yang; Cottle, W Taylor; Ha, Taekjip.
Afiliação
  • Liu Y; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA.
  • Cottle WT; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA.
  • Ha T; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Baltimore, MD, USA. Electronic address: tjha@jhu.edu.
Trends Genet ; 39(7): 560-574, 2023 07.
Article em En | MEDLINE | ID: mdl-36967246
ABSTRACT
DNA double-strand breaks (DSBs) are one of the most genotoxic DNA lesions, driving a range of pathological defects from cancers to immunodeficiencies. To combat genomic instability caused by DSBs, evolution has outfitted cells with an intricate protein network dedicated to the rapid and accurate repair of these lesions. Pioneering studies have identified and characterized many crucial repair factors in this network, while the advent of genome manipulation tools like clustered regularly interspersed short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) has reinvigorated interest in DSB repair mechanisms. This review surveys the latest methodological advances and biological insights gained by utilizing Cas9 as a precise 'damage inducer' for the study of DSB repair. We highlight rapidly inducible Cas9 systems that enable synchronized and efficient break induction. When combined with sequencing and genome-specific imaging approaches, inducible Cas9 systems greatly expand our capability to spatiotemporally characterize cellular responses to DSB at specific genomic coordinates, providing mechanistic insights that were previously unobtainable.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Quebras de DNA de Cadeia Dupla / Sistemas CRISPR-Cas Tipo de estudo: Prognostic_studies Idioma: En Revista: Trends Genet Assunto da revista: GENETICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Quebras de DNA de Cadeia Dupla / Sistemas CRISPR-Cas Tipo de estudo: Prognostic_studies Idioma: En Revista: Trends Genet Assunto da revista: GENETICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos