Your browser doesn't support javascript.
loading
Synthetic lethality of Mycobacterium tuberculosis NADH dehydrogenases is due to impaired NADH oxidation.
Xu, Yuanyuan; Ehrt, Sabine; Schnappinger, Dirk; Beites, Tiago.
Afiliação
  • Xu Y; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
  • Ehrt S; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
  • Schnappinger D; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
  • Beites T; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
bioRxiv ; 2023 Apr 10.
Article em En | MEDLINE | ID: mdl-37090679
Type 2 NADH dehydrogenase (Ndh-2) is an oxidative phosphorylation enzyme discussed as a promising drug target in different pathogens, including Plasmodium falciparum and Mycobacterium tuberculosis (Mtb). To kill Mtb, Ndh-2 needs to be inactivated together with the alternative enzyme type 1 NADH dehydrogenase (Ndh-1), but the mechanism of this synthetic lethality remained unknown. Here, we provide insights into the biology of NADH dehydrogenases and a mechanistic explanation for Ndh-1 and Ndh-2 synthetic lethality in Mtb. NADH dehydrogenases have two main functions: maintaining an appropriate NADH/NAD+ ratio by converting NADH into NAD+ and providing electrons to the respiratory chain. Heterologous expression of a water forming NADH oxidase (Nox), which catalyzes the oxidation of NADH, allows to distinguish between these two functions and show that Nox rescues Mtb from Ndh-1/Ndh-2 synthetic lethality, indicating that NADH oxidation is the essential function of NADH dehydrogenases for Mtb viability. Quantification of intracellular levels of NADH, NAD, ATP, and oxygen consumption revealed that preventing NADH oxidation by Ndh-2 depletes NAD(H) and inhibits respiration. Finally, we show that Ndh-1/ Ndh-2 synthetic lethality can be achieved through chemical inhibition.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos