Your browser doesn't support javascript.
loading
Unsupervised machine learning models reveal predictive markers of glioblastoma patient survival using white blood cell counts prior to initiating chemoradiation.
Wang, Wesley; Kumm, Zeynep Temerit; Ho, Cindy; Zanesco-Fontes, Ideli; Texiera, Gustavo; Reis, Rui Manuel; Martinetto, Horacio; Khan, Javaria; Anderson, Mark D; Chohan, M Omar; Beyer, Sasha; Elder, J Brad; Giglio, Pierre; Otero, José Javier.
Afiliação
  • Wang W; The Ohio State University Wexner Medical Center.
  • Kumm ZT; The Ohio State University Wexner Medical Center.
  • Ho C; The Ohio State University Wexner Medical Center.
  • Zanesco-Fontes I; Barretos Cancer Hospital.
  • Texiera G; Barretos Cancer Hospital.
  • Reis RM; Barretos Cancer Hospital.
  • Martinetto H; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia.
  • Khan J; University of Mississippi Medical Center.
  • Anderson MD; University of Mississippi Medical Center.
  • Chohan MO; University of Mississippi Medical Center.
  • Beyer S; The Ohio State University Wexner Medical Center.
  • Elder JB; The Ohio State University Wexner Medical Center.
  • Giglio P; The Ohio State University Wexner Medical Center.
  • Otero JJ; The Ohio State University Wexner Medical Center.
Res Sq ; 2023 Apr 21.
Article em En | MEDLINE | ID: mdl-37131745
Purpose: Glioblastoma is a malignant brain tumor requiring careful clinical monitoring even after primary management. Personalized medicine has suggested use of various molecular biomarkers as predictors of patient prognosis or factors utilized for clinical decision making. However, the accessibility of such molecular testing poses a constraint for various institutes requiring identification of low-cost predictive biomarkers to ensure equitable care. Methods: We collected retrospective data from patients seen at Ohio State University, University of Mississippi, Barretos Cancer Hospital (Brazil), and FLENI (Argentina) who were managed for glioblastoma-amounting to nearly 600 patient records documented using REDCap. Patients were evaluated using an unsupervised machine learning approach comprised of dimensionality reduction and eigenvector analysis to visualize the inter-relationship of collected clinical features. Results: We discovered that white blood cell count of a patient during baseline planning for treatment was predictive of overall survival with an over 6-month median survival difference between the upper and lower quartiles of white blood cell count. By utilizing an objective PDL-1 immunohistochemistry quantification algorithm, we were further able to identify an increase in PDL-1 expression in glioblastoma patients with high white blood cell counts. Conclusion: These findings suggest that in a subset of glioblastoma patients the incorporation of white blood cell count and PDL-1 expression in the brain tumor biopsy as simple biomarkers predicting glioblastoma patient survival. Moreover, use of machine learning models allows us to visualize complex clinical datasets to uncover novel clinical relationships.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Res Sq Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Res Sq Ano de publicação: 2023 Tipo de documento: Article