Your browser doesn't support javascript.
loading
Improving variant calling using population data and deep learning.
Chen, Nae-Chyun; Kolesnikov, Alexey; Goel, Sidharth; Yun, Taedong; Chang, Pi-Chuan; Carroll, Andrew.
Afiliação
  • Chen NC; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA. cnaechy1@jhu.edu.
  • Kolesnikov A; Google Health, Palo Alto, CA, 94304, USA.
  • Goel S; Google Health, Palo Alto, CA, 94304, USA.
  • Yun T; Google Health, Cambridge, MA, 02142, USA.
  • Chang PC; Google Health, Palo Alto, CA, 94304, USA.
  • Carroll A; Google Health, Palo Alto, CA, 94304, USA. awcarroll@google.com.
BMC Bioinformatics ; 24(1): 197, 2023 May 12.
Article em En | MEDLINE | ID: mdl-37173615
Large-scale population variant data is often used to filter and aid interpretation of variant calls in a single sample. These approaches do not incorporate population information directly into the process of variant calling, and are often limited to filtering which trades recall for precision. In this study, we develop population-aware DeepVariant models with a new channel encoding allele frequencies from the 1000 Genomes Project. This model reduces variant calling errors, improving both precision and recall in single samples, and reduces rare homozygous and pathogenic clinvar calls cohort-wide. We assess the use of population-specific or diverse reference panels, finding the greatest accuracy with diverse panels, suggesting that large, diverse panels are preferable to individual populations, even when the population matches sample ancestry. Finally, we show that this benefit generalizes to samples with different ancestry from the training data even when the ancestry is also excluded from the reference panel.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Aprendizado Profundo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Aprendizado Profundo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos