E2EFP-MIL: End-to-end and high-generalizability weakly supervised deep convolutional network for lung cancer classification from whole slide image.
Med Image Anal
; 88: 102837, 2023 08.
Article
em En
| MEDLINE
| ID: mdl-37216736
Efficient and accurate distinction of histopathological subtype of lung cancer is quite critical for the individualized treatment. So far, artificial intelligence techniques have been developed, whose performance yet remained debatable on more heterogenous data, hindering their clinical deployment. Here, we propose an end-to-end, well-generalized and data-efficient weakly supervised deep learning-based method. The method, end-to-end feature pyramid deep multi-instance learning model (E2EFP-MIL), contains an iterative sampling module, a trainable feature pyramid module and a robust feature aggregation module. E2EFP-MIL uses end-to-end learning to extract generalized morphological features automatically and identify discriminative histomorphological patterns. This method is trained with 1007 whole slide images (WSIs) of lung cancer from TCGA, with AUCs of 0.95-0.97 in test sets. We validated E2EFP-MIL in 5 real-world external heterogenous cohorts including nearly 1600 WSIs from both United States and China with AUCs of 0.94-0.97, and found that 100-200 training images are enough to achieve an AUC of >0.9. E2EFP-MIL overperforms multiple state-of-the-art MIL-based methods with high accuracy and low hardware requirements. Excellent and robust results prove generalizability and effectiveness of E2EFP-MIL in clinical practice. Our code is available at https://github.com/raycaohmu/E2EFP-MIL.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Inteligência Artificial
/
Neoplasias Pulmonares
Tipo de estudo:
Prognostic_studies
Limite:
Humans
País/Região como assunto:
Asia
Idioma:
En
Revista:
Med Image Anal
Assunto da revista:
DIAGNOSTICO POR IMAGEM
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China