Your browser doesn't support javascript.
loading
Genomic Insights into Adaptation to Karst Limestone and Incipient Speciation in East Asian Platycarya spp. (Juglandaceae).
Cao, Yu; Almeida-Silva, Fabricio; Zhang, Wei-Ping; Ding, Ya-Mei; Bai, Dan; Bai, Wei-Ning; Zhang, Bo-Wen; Van de Peer, Yves; Zhang, Da-Yong.
Afiliação
  • Cao Y; State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
  • Almeida-Silva F; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
  • Zhang WP; Center for Plant Systems Biology, VIB, Ghent, Belgium.
  • Ding YM; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
  • Bai D; Center for Plant Systems Biology, VIB, Ghent, Belgium.
  • Bai WN; State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
  • Zhang BW; State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
  • Van de Peer Y; State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
  • Zhang DY; State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
Mol Biol Evol ; 40(6)2023 06 01.
Article em En | MEDLINE | ID: mdl-37216901
When challenged by similar environmental conditions, phylogenetically distant taxa often independently evolve similar traits (convergent evolution). Meanwhile, adaptation to extreme habitats might lead to divergence between taxa that are otherwise closely related. These processes have long existed in the conceptual sphere, yet molecular evidence, especially for woody perennials, is scarce. The karst endemic Platycarya longipes and its only congeneric species, Platycarya strobilacea, which is widely distributed in the mountains in East Asia, provide an ideal model for examining the molecular basis of both convergent evolution and speciation. Using chromosome-level genome assemblies of both species, and whole-genome resequencing data from 207 individuals spanning their entire distribution range, we demonstrate that P. longipes and P. strobilacea form two species-specific clades, which diverged around 2.09 million years ago. We find an excess of genomic regions exhibiting extreme interspecific differentiation, potentially due to long-term selection in P. longipes, likely contributing to the incipient speciation of the genus Platycarya. Interestingly, our results unveil underlying karst adaptation in both copies of the calcium influx channel gene TPC1 in P. longipes. TPC1 has previously been identified as a selective target in certain karst-endemic herbs, indicating a convergent adaptation to high calcium stress among karst-endemic species. Our study reveals the genic convergence of TPC1 among karst endemics and the driving forces underneath the incipient speciation of the two Platycarya lineages.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Carbonato de Cálcio / Juglandaceae Tipo de estudo: Prognostic_studies País/Região como assunto: Asia Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Carbonato de Cálcio / Juglandaceae Tipo de estudo: Prognostic_studies País/Região como assunto: Asia Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China