Your browser doesn't support javascript.
loading
Effects of Simulated Microgravity In Vitro on Human Metaphase II Oocytes: An Electron Microscopy-Based Study.
Miglietta, Selenia; Cristiano, Loredana; Espinola, Maria Salomé B; Masiello, Maria Grazia; Micara, Giulietta; Battaglione, Ezio; Linari, Antonella; Palmerini, Maria Grazia; Familiari, Giuseppe; Aragona, Cesare; Bizzarri, Mariano; Macchiarelli, Guido; Nottola, Stefania A.
Afiliação
  • Miglietta S; Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy.
  • Cristiano L; Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
  • Espinola MSB; Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy.
  • Masiello MG; Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy.
  • Micara G; Department of Maternal, Infantile and Urological Sciences, Sapienza University, 00165 Rome, Italy.
  • Battaglione E; Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy.
  • Linari A; Department of Maternal, Infantile and Urological Sciences, Sapienza University, 00165 Rome, Italy.
  • Palmerini MG; Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
  • Familiari G; Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy.
  • Aragona C; Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy.
  • Bizzarri M; Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy.
  • Macchiarelli G; Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
  • Nottola SA; Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy.
Cells ; 12(10)2023 05 09.
Article em En | MEDLINE | ID: mdl-37408181
ABSTRACT
The Gravity Force to which living beings are subjected on Earth rules the functionality of most biological processes in many tissues. It has been reported that a situation of Microgravity (such as that occurring in space) causes negative effects on living beings. Astronauts returning from space shuttle missions or from the International Space Station have been diagnosed with various health problems, such as bone demineralization, muscle atrophy, cardiovascular deconditioning, and vestibular and sensory imbalance, including impaired visual acuity, altered metabolic and nutritional status, and immune system dysregulation. Microgravity has profound effects also on reproductive functions. Female astronauts, in fact, suppress their cycles during space travels, and effects at the cellular level in the early embryo development and on female gamete maturation have also been observed. The opportunities to use space flights to study the effects of gravity variations are limited because of the high costs and lack of repeatability of the experiments. For these reasons, the use of microgravity simulators for studying, at the cellular level, the effects, such as those, obtained during/after a spatial trip, are developed to confirm that these models can be used in the study of body responses under conditions different from those found in a unitary Gravity environment (1 g). In view of this, this study aimed to investigate in vitro the effects of simulated microgravity on the ultrastructural features of human metaphase II oocytes using a Random Positioning Machine (RPM). We demonstrated for the first time, by Transmission Electron Microscopy analysis, that microgravity might compromise oocyte quality by affecting not only the localization of mitochondria and cortical granules due to a possible alteration of the cytoskeleton but also the function of mitochondria and endoplasmic reticulum since in RPM oocytes we observed a switch in the morphology of smooth endoplasmic reticulum (SER) and associated mitochondria from mitochondria-SER aggregates to mitochondria-vesicle complexes. We concluded that microgravity might negatively affect oocyte quality by interfering in vitro with the normal sequence of morphodynamic events essential for acquiring and maintaining a proper competence to fertilization in human oocytes.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Ausência de Peso Limite: Female / Humans Idioma: En Revista: Cells Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Ausência de Peso Limite: Female / Humans Idioma: En Revista: Cells Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Itália