Your browser doesn't support javascript.
loading
Comorbidities directly extracted from the hospital database for adjusting SSI risk in the new national semiautomated surveillance system in France: The SPICMI network.
Picard, Jérémy; Nkoumazok, Béatrice; Arnaud, Isabelle; Verjat-Trannoy, Delphine; Astagneau, Pascal.
Afiliação
  • Picard J; Service de maladies infectieuses et tropicales, CHRU Brest, Université de Bretagne Occidentale, Brest, France.
  • Nkoumazok B; Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F75013 Paris, France.
  • Arnaud I; Centre de prévention des infections associées aux soins (CPias), Paris, France.
  • Verjat-Trannoy D; Centre de prévention des infections associées aux soins (CPias), Paris, France.
  • Astagneau P; Centre de prévention des infections associées aux soins (CPias), Paris, France.
Infect Control Hosp Epidemiol ; 45(1): 27-34, 2024 Jan.
Article em En | MEDLINE | ID: mdl-37529839
OBJECTIVE: To evaluate the performance of a comorbidity-based risk-adjustment model for surgical-site infection (SSI) reporting and benchmarking using a panel of variables extracted from the hospital discharge database (HDD), including comorbidities, compared to other models that use variables from different data sources. METHODS: The French national surveillance program for SSI (SPICMI) has collected data from voluntary hospitals in the first 6 months of 2020 and 2021, for 16 selected surgery procedures, using a semiautomated algorithm for detection. Four risk-adjustment models were selected with logistic regression analysis, combining the different patterns of variables: National Nosocomial Infections Surveillance System (NNIS) risk-index components, individual operative data, and 6 individual comorbidities according to International Classification of Disease, Tenth Revision (ICD-10) diagnosis: obesity, diabetes, malnutrition, hypertension, cancer, or immunosuppression. Areas under the curve (AUCs) were calculated and compared. RESULTS: Overall, 294 SSI were detected among 11,975 procedures included. All 6 comorbidities were related to SSI in the univariate analysis. The AUC of the selected model including comorbidities (0.675; 95% confidence interval [CI], 0.642-0.707), was significantly higher than the AUC of the model without comorbidities (0.641; 95% CI, 0.609-0.672; P = .016) or the AUC using the NNIS-index components (0.598; 95% CI, 0.564-0.630; P < .001). The HDD-based model AUC (0.659; 95% CI, 0.625-0.692) did not differ significantly from the selected model without comorbidities (P = .23). CONCLUSION: Including HDD-based comorbidities as patient case-mix variables instead of NNIS risk index factors could be an effective approach for risk-adjustment of automated SSI surveillance more widely accessible to hospitals.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Vigilância da População / Infecção Hospitalar Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Limite: Humans País/Região como assunto: Europa Idioma: En Revista: Infect Control Hosp Epidemiol Assunto da revista: DOENCAS TRANSMISSIVEIS / ENFERMAGEM / EPIDEMIOLOGIA / HOSPITAIS Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Vigilância da População / Infecção Hospitalar Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Limite: Humans País/Região como assunto: Europa Idioma: En Revista: Infect Control Hosp Epidemiol Assunto da revista: DOENCAS TRANSMISSIVEIS / ENFERMAGEM / EPIDEMIOLOGIA / HOSPITAIS Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França