Your browser doesn't support javascript.
loading
Enhancement of Hydrate Stability through Substitutional Defects.
Fleming, Megan E; Swift, Jennifer A.
Afiliação
  • Fleming ME; Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057-1227, United States.
  • Swift JA; Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057-1227, United States.
Cryst Growth Des ; 23(8): 5860-5867, 2023 Aug 02.
Article em En | MEDLINE | ID: mdl-37547883
ABSTRACT
Cytosine monohydrate (CM) and anhydrate crystal forms reversibly interconvert under high temperatures or high humidity conditions. Here, we demonstrate through defect engineering the ability to expand the thermal stability range of CM through the targeted creation of quantifiable defects in low-level concentrations. Twelve different molecular dyes with a variety of core structures and charges were screened as potential dopants in CM. CM-dye phases prepared with Congo red (CR), Evans blue (EB), and Azocarmine G (AG) exhibited the highest inclusion levels (up to 1.1 wt %). In these doped isomorphous materials, each dye is presumed to substitute for 4-7 cytosine molecules within the low-rugosity (102) planes of the CM matrixes, thereby creating a quantifiable substitutional defect and an impediment to the cooperative molecular motions which enable the transformation to the anhydrate. Dehydration of materials with these engineered defects requires significantly higher temperatures and proceeds with slower kinetics compared to pure CM. The CM-dye phases also exhibit a reduction in the thermal expansion along key crystallographic axes and yield dehydration products with altered particle morphologies.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Cryst Growth Des Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Cryst Growth Des Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos