Your browser doesn't support javascript.
loading
Call detail record aggregation methodology impacts infectious disease models informed by human mobility.
Gibbs, Hamish; Musah, Anwar; Seidu, Omar; Ampofo, William; Asiedu-Bekoe, Franklin; Gray, Jonathan; Adewole, Wole A; Cheshire, James; Marks, Michael; Eggo, Rosalind M.
Afiliação
  • Gibbs H; Department of Geography, University College London, London, United Kingdom.
  • Musah A; Department of Geography, University College London, London, United Kingdom.
  • Seidu O; Ghana Statistical Service, Accra, Ghana.
  • Ampofo W; Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.
  • Asiedu-Bekoe F; Ghana Health Service, Ministry of Health, Accra, Ghana.
  • Gray J; Flowminder Foundation, Stockholm, Sweden.
  • Adewole WA; Flowminder Foundation, Stockholm, Sweden.
  • Cheshire J; Department of Geography, University College London, London, United Kingdom.
  • Marks M; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom.
  • Eggo RM; Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom.
PLoS Comput Biol ; 19(8): e1011368, 2023 08.
Article em En | MEDLINE | ID: mdl-37561812
This paper demonstrates how two different methods used to calculate population-level mobility from Call Detail Records (CDR) produce varying predictions of the spread of epidemics informed by these data. Our findings are based on one CDR dataset describing inter-district movement in Ghana in 2021, produced using two different aggregation methodologies. One methodology, "all pairs," is designed to retain long distance network connections while the other, "sequential" methodology is designed to accurately reflect the volume of travel between locations. We show how the choice of methodology feeds through models of human mobility to the predictions of a metapopulation SEIR model of disease transmission. We also show that this impact varies depending on the location of pathogen introduction and the transmissibility of infections. For central locations or highly transmissible diseases, we do not observe significant differences between aggregation methodologies on the predicted spread of disease. For less transmissible diseases or those introduced into remote locations, we find that the choice of aggregation methodology influences the speed of spatial spread as well as the size of the peak number of infections in individual districts. Our findings can help researchers and users of epidemiological models to understand how methodological choices at the level of model inputs may influence the results of models of infectious disease transmission, as well as the circumstances in which these choices do not alter model predictions.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Doenças Transmissíveis / Epidemias Tipo de estudo: Prognostic_studies Limite: Humans País/Região como assunto: Africa Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Doenças Transmissíveis / Epidemias Tipo de estudo: Prognostic_studies Limite: Humans País/Região como assunto: Africa Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Reino Unido