Your browser doesn't support javascript.
loading
Enhanced Deuteron Coalescence Probability in Jets.
Acharya, S; Adamová, D; Adler, A; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Ahuja, I; Akindinov, A; Al-Turany, M; Aleksandrov, D; Alessandro, B; Alfanda, H M; Alfaro Molina, R; Ali, B; Alici, A; Alizadehvandchali, N; Alkin, A; Alme, J; Alocco, G; Alt, T; Altsybeev, I; Anaam, M N; Andrei, C; Andronic, A; Anguelov, V; Antinori, F; Antonioli, P; Apadula, N; Aphecetche, L; Appelshäuser, H; Arata, C; Arcelli, S; Aresti, M; Arnaldi, R; Arneiro, J G M C A; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Bae, J; Baek, Y W; Bai, X; Bailhache, R; Bailung, Y; Balbino, A.
Afiliação
  • Acharya S; Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France.
  • Adamová D; Nuclear Physics Institute of the Czech Academy of Sciences, Husinec-Rez, Czech Republic.
  • Adler A; Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany.
  • Aglieri Rinella G; European Organization for Nuclear Research (CERN), Geneva, Switzerland.
  • Agnello M; Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy.
  • Agrawal N; INFN, Sezione di Bologna, Bologna, Italy.
  • Ahammed Z; Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India.
  • Ahmad S; Department of Physics, Aligarh Muslim University, Aligarh, India.
  • Ahn SU; Korea Institute of Science and Technology Information, Daejeon, Republic of Korea.
  • Ahuja I; Faculty of Science, P.J. Safárik University, Kosice, Slovak Republic.
  • Akindinov A; Affiliated with an institute covered by a cooperation agreement with CERN.
  • Al-Turany M; Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
  • Aleksandrov D; Affiliated with an institute covered by a cooperation agreement with CERN.
  • Alessandro B; INFN, Sezione di Torino, Turin, Italy.
  • Alfanda HM; Central China Normal University, Wuhan, China.
  • Alfaro Molina R; Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico.
  • Ali B; Department of Physics, Aligarh Muslim University, Aligarh, India.
  • Alici A; Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy.
  • Alizadehvandchali N; University of Houston, Houston, Texas, United States.
  • Alkin A; European Organization for Nuclear Research (CERN), Geneva, Switzerland.
  • Alme J; Department of Physics and Technology, University of Bergen, Bergen, Norway.
  • Alocco G; INFN, Sezione di Cagliari, Cagliari, Italy.
  • Alt T; Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany.
  • Altsybeev I; Affiliated with an institute covered by a cooperation agreement with CERN.
  • Anaam MN; Central China Normal University, Wuhan, China.
  • Andrei C; Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
  • Andronic A; Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Munster, Germany.
  • Anguelov V; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.
  • Antinori F; INFN, Sezione di Padova, Padova, Italy.
  • Antonioli P; INFN, Sezione di Bologna, Bologna, Italy.
  • Apadula N; Lawrence Berkeley National Laboratory, Berkeley, California, United States.
  • Aphecetche L; SUBATECH, IMT Atlantique, Nantes Université, CNRS-IN2P3, Nantes, France.
  • Appelshäuser H; Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany.
  • Arata C; Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France.
  • Arcelli S; Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy.
  • Aresti M; INFN, Sezione di Cagliari, Cagliari, Italy.
  • Arnaldi R; INFN, Sezione di Torino, Turin, Italy.
  • Arneiro JGMCA; Universidade de São Paulo (USP), São Paulo, Brazil.
  • Arsene IC; Department of Physics, University of Oslo, Oslo, Norway.
  • Arslandok M; Yale University, New Haven, Connecticut, United States.
  • Augustinus A; European Organization for Nuclear Research (CERN), Geneva, Switzerland.
  • Averbeck R; Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
  • Azmi MD; Department of Physics, Aligarh Muslim University, Aligarh, India.
  • Badalà A; INFN, Sezione di Catania, Catania, Italy.
  • Bae J; Sungkyunkwan University, Suwon City, Republic of Korea.
  • Baek YW; Gangneung-Wonju National University, Gangneung, Republic of Korea.
  • Bai X; University of Science and Technology of China, Hefei, China.
  • Bailhache R; Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany.
  • Bailung Y; Indian Institute of Technology Indore, Indore, India.
  • Balbino A; Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy.
Phys Rev Lett ; 131(4): 042301, 2023 Jul 28.
Article em En | MEDLINE | ID: mdl-37566840
The transverse-momentum (p_{T}) spectra and coalescence parameters B_{2} of (anti)deuterons are measured in p-p collisions at sqrt[s]=13 TeV for the first time in and out of jets. In this measurement, the direction of the leading particle with the highest p_{T} in the event (p_{T}^{lead}>5 GeV/c) is used as an approximation for the jet axis. The event is consequently divided into three azimuthal regions, and the jet signal is obtained as the difference between the toward region, that contains jet fragmentation products in addition to the underlying event (UE), and the transverse region, which is dominated by the UE. The coalescence parameter in the jet is found to be approximately a factor of 10 larger than that in the underlying event. This experimental observation is consistent with the coalescence picture and can be attributed to the smaller average phase-space distance between nucleons in the jet cone as compared with the underlying event. The results presented in this Letter are compared to predictions from a simple nucleon coalescence model, where the phase-space distributions of nucleons are generated using pythia8 with the Monash 2013 tuning, and to predictions from a deuteron production model based on ordinary nuclear reactions with parametrized energy-dependent cross sections tuned on data. The latter model is implemented in pythia8.3. Both models reproduce the observed large difference between in-jet and out-of-jet coalescence parameters, although the almost flat trend of the B_{2}^{Jet} is not reproduced by the models, which instead give a decreasing trend.

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: França