Your browser doesn't support javascript.
loading
Large-scale optical characterization of solid-state quantum emitters.
Sutula, Madison; Christen, Ian; Bersin, Eric; Walsh, Michael P; Chen, Kevin C; Mallek, Justin; Melville, Alexander; Titze, Michael; Bielejec, Edward S; Hamilton, Scott; Braje, Danielle; Dixon, P Benjamin; Englund, Dirk R.
Afiliação
  • Sutula M; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA. mmsutula@mit.edu.
  • Christen I; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Bersin E; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Walsh MP; Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.
  • Chen KC; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Mallek J; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Melville A; Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.
  • Titze M; Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.
  • Bielejec ES; Sandia National Laboratories, Albuquerque, NM, USA.
  • Hamilton S; Sandia National Laboratories, Albuquerque, NM, USA.
  • Braje D; Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.
  • Dixon PB; Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.
  • Englund DR; Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.
Nat Mater ; 22(11): 1338-1344, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37604910
Solid-state quantum emitters have emerged as a leading quantum memory for quantum networking applications. However, standard optical characterization techniques are neither efficient nor repeatable at scale. Here we introduce and demonstrate spectroscopic techniques that enable large-scale, automated characterization of colour centres. We first demonstrate the ability to track colour centres by registering them to a fabricated machine-readable global coordinate system, enabling a systematic comparison of the same colour centre sites over many experiments. We then implement resonant photoluminescence excitation in a widefield cryogenic microscope to parallelize resonant spectroscopy, achieving two orders of magnitude speed-up over confocal microscopy. Finally, we demonstrate automated chip-scale characterization of colour centres and devices at room temperature, imaging thousands of microscope fields of view. These tools will enable the accelerated identification of useful quantum emitters at chip scale, enabling advances in scaling up colour centre platforms for quantum information applications, materials science and device design and characterization.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Nat Mater Assunto da revista: CIENCIA / QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Nat Mater Assunto da revista: CIENCIA / QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos