Your browser doesn't support javascript.
loading
Mapping protein dynamics at high spatial resolution with temperature-jump X-ray crystallography.
Wolff, Alexander M; Nango, Eriko; Young, Iris D; Brewster, Aaron S; Kubo, Minoru; Nomura, Takashi; Sugahara, Michihiro; Owada, Shigeki; Barad, Benjamin A; Ito, Kazutaka; Bhowmick, Asmit; Carbajo, Sergio; Hino, Tomoya; Holton, James M; Im, Dohyun; O'Riordan, Lee J; Tanaka, Tomoyuki; Tanaka, Rie; Sierra, Raymond G; Yumoto, Fumiaki; Tono, Kensuke; Iwata, So; Sauter, Nicholas K; Fraser, James S; Thompson, Michael C.
Afiliação
  • Wolff AM; Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA.
  • Nango E; RIKEN SPring-8 Center, Sayo-gun, Japan. eriko.nango.c4@tohoku.ac.jp.
  • Young ID; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Japan. eriko.nango.c4@tohoku.ac.jp.
  • Brewster AS; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
  • Kubo M; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Nomura T; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Sugahara M; RIKEN SPring-8 Center, Sayo-gun, Japan.
  • Owada S; Department of Life Science, Graduate School of Science, University of Hyogo, Hyogo, Japan.
  • Barad BA; RIKEN SPring-8 Center, Sayo-gun, Japan.
  • Ito K; Department of Life Science, Graduate School of Science, University of Hyogo, Hyogo, Japan.
  • Bhowmick A; RIKEN SPring-8 Center, Sayo-gun, Japan.
  • Carbajo S; RIKEN SPring-8 Center, Sayo-gun, Japan.
  • Hino T; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
  • Holton JM; Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, CA, USA.
  • Im D; Laboratory for Drug Discovery, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni-shi, Japan.
  • O'Riordan LJ; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Tanaka T; SLAC National Accelerator Laboratory, Linac Coherent Light Source, Menlo Park, CA, USA.
  • Tanaka R; Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
  • Sierra RG; Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan.
  • Yumoto F; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan.
  • Tono K; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Iwata S; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
  • Sauter NK; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Fraser JS; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Japan.
  • Thompson MC; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Nat Chem ; 15(11): 1549-1558, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37723259
ABSTRACT
Understanding and controlling protein motion at atomic resolution is a hallmark challenge for structural biologists and protein engineers because conformational dynamics are essential for complex functions such as enzyme catalysis and allosteric regulation. Time-resolved crystallography offers a window into protein motions, yet without a universal perturbation to initiate conformational changes the method has been limited in scope. Here we couple a solvent-based temperature jump with time-resolved crystallography to visualize structural motions in lysozyme, a dynamic enzyme. We observed widespread atomic vibrations on the nanosecond timescale, which evolve on the submillisecond timescale into localized structural fluctuations that are coupled to the active site. An orthogonal perturbation to the enzyme, inhibitor binding, altered these dynamics by blocking key motions that allow energy to dissipate from vibrations into functional movements linked to the catalytic cycle. Because temperature jump is a universal method for perturbing molecular motion, the method demonstrated here is broadly applicable for studying protein dynamics.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Proteínas Idioma: En Revista: Nat Chem Assunto da revista: QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Proteínas Idioma: En Revista: Nat Chem Assunto da revista: QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos