Your browser doesn't support javascript.
loading
Structural changes in Schwann cells and nerve fibres in type 1 diabetes: relationship with diabetic polyneuropathy.
Hu, Xiaoli; Buhl, Christian Selmer; Sjogaard, Marie Balle; Schousboe, Karoline; Mizrak, Hatice Isik; Kufaishi, Huda; Jensen, Troels Staehelin; Hansen, Christian Stevns; Yderstræde, Knud Bonnet; Zhang, Ming-Dong; Ernfors, Patrik; Nyengaard, Jens Randel; Karlsson, Pall.
Afiliação
  • Hu X; Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark.
  • Buhl CS; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
  • Sjogaard MB; Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark.
  • Schousboe K; Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
  • Mizrak HI; Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark.
  • Kufaishi H; Steno Diabetes Center Copenhagen, Herlev, Denmark.
  • Jensen TS; Steno Diabetes Center Copenhagen, Herlev, Denmark.
  • Hansen CS; Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
  • Yderstræde KB; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
  • Zhang MD; Steno Diabetes Center Copenhagen, Herlev, Denmark.
  • Ernfors P; Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark.
  • Nyengaard JR; Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden.
  • Karlsson P; Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden.
Diabetologia ; 66(12): 2332-2345, 2023 12.
Article em En | MEDLINE | ID: mdl-37728731
AIMS/HYPOTHESIS: Our aim was to investigate structural changes of cutaneous Schwann cells (SCs), including nociceptive Schwann cells (nSCs) and axons, in individuals with diabetic polyneuropathy. We also aimed to investigate the relationship between these changes and peripheral neuropathic symptoms in type 1 diabetes. METHODS: Skin biopsies (3 mm) taken from carefully phenotyped participants with type 1 diabetes without polyneuropathy (T1D, n=25), type 1 diabetes with painless diabetic polyneuropathy (T1DPN, n=30) and type 1 diabetes with painful diabetic polyneuropathy (P-T1DPN, n=27), and from healthy control individuals (n=25) were immunostained with relevant antibodies to visualise SCs and nerve fibres. Stereological methods were used to quantify the expression of cutaneous SCs and nerve fibres. RESULTS: There was a difference in the number density of nSCs not abutting to nerve fibres between the groups (p=0.004) but not in the number density of nSCs abutting to nerve fibres, nor in solitary or total subepidermal SC soma number density. The overall dermal SC expression (measured by dermal SC area fraction and subepidermal SC process density) and peripheral nerve fibre expression (measured by intraepidermal nerve fibre density, dermal nerve fibre area fraction and subepidermal nerve fibre density) differed between the groups (all p<0.05): significant differences were seen in participants with T1DPN and P-T1DPN compared with those without diabetic polyneuropathy (healthy control and T1D groups) (all p<0.05). No difference was found between participants in the T1DPN and P-T1DPN group, nor between participants in the T1D and healthy control group (all p>0.05). Correlational analysis showed that cutaneous SC processes and nerve fibres were highly associated, and they were weakly negatively correlated with different neuropathy measures. CONCLUSIONS/INTERPRETATION: Cutaneous SC processes and nerves, but not SC soma, are degenerated and interdependent in individuals with diabetic polyneuropathy. However, an increase in structurally damaged nSCs was seen in individuals with diabetic polyneuropathy. Furthermore, dermal SC processes and nerve fibres correlate weakly with clinical measures of neuropathy and may play a partial role in the pathophysiology of diabetic polyneuropathy in type 1 diabetes.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 1 / Neuropatias Diabéticas Limite: Humans Idioma: En Revista: Diabetologia Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Dinamarca

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 1 / Neuropatias Diabéticas Limite: Humans Idioma: En Revista: Diabetologia Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Dinamarca