Your browser doesn't support javascript.
loading
Influence of the Synthesis Scheme of Nanocrystalline Cerium Oxide and Its Concentration on the Biological Activity of Cells Providing Wound Regeneration.
Silina, Ekaterina V; Stupin, Victor A; Manturova, Natalia E; Ivanova, Olga S; Popov, Anton L; Mysina, Elena A; Artyushkova, Elena B; Kryukov, Alexey A; Dodonova, Svetlana A; Kruglova, Maria P; Tinkov, Alexey A; Skalny, Anatoly V; Ivanov, Vladimir K.
Afiliação
  • Silina EV; Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia.
  • Stupin VA; Department of Hospital Surgery, Pirogov Russian National Research Medical University, 117997 Moscow, Russia.
  • Manturova NE; Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia.
  • Ivanova OS; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
  • Popov AL; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia.
  • Mysina EA; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia.
  • Artyushkova EB; Research Institute of Experimental Medicine, Kursk State Medical University, 305041 Kursk, Russia.
  • Kryukov AA; Research Institute of Experimental Medicine, Kursk State Medical University, 305041 Kursk, Russia.
  • Dodonova SA; Research Institute of Experimental Medicine, Kursk State Medical University, 305041 Kursk, Russia.
  • Kruglova MP; Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia.
  • Tinkov AA; Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia.
  • Skalny AV; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia.
  • Ivanov VK; Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia.
Int J Mol Sci ; 24(19)2023 Sep 24.
Article em En | MEDLINE | ID: mdl-37833949
ABSTRACT
In the ongoing search for practical uses of rare-earth metal nanoparticles, cerium dioxide nanoparticles (nanoceria) have received special attention. The purpose of this research was to study the biomedical effects of nanocrystalline forms of cerium oxide obtained by different synthesis schemes and to evaluate the effect of different concentrations of nanoceria (from 10-2 to 10-6 M) on cells involved in the regeneration of skin cell structures such as fibroblasts, mesenchymal stem cells, and keratinocytes. Two different methods of nanoceria preparation were investigated (1) CeO-NPs-1 by precipitation from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid and (2) CeO-NPs-2 by hydrolysis of ammonium hexanitratocerate (IV) under conditions of thermal autoclaving. According to the X-ray diffraction, transmission electron microscopy, and dynamic light scattering data, CeO2-1 consists of individual particles of cerium dioxide (3-5 nm) and their aggregates with diameters of 60-130 nm. CeO2-2 comprises small aggregates of 8-20 nm in diameter, which consist of particles of 2-3 nm in size. Cell cultures of human fibroblasts, human mesenchymal stem cells, and human keratinocytes were cocultured with different concentrations of nanoceria sols (10-2, 10-3, 10-4, 10-5, and 10-6 mol/L). The metabolic activity of all cell types was investigated by MTT test after 48 and 72 h, whereas proliferative activity and cytotoxicity were determined by quantitative cell culture counting and live/dead test. A dependence of biological effects on the method of nanoceria preparation and concentration was revealed. Data were obtained with respect to the optimal concentration of sol to achieve the highest metabolic effect in the used cell cultures. Hypotheses about the mechanisms of the obtained effects and the structure of a fundamentally new medical device for accelerated healing of skin wounds were formulated. The method of nanoceria synthesis and concentration fundamentally and significantly change the biological activity of cell cultures of different types-from suppression to pronounced stimulation. The best biological activity of cell cultures was determined through cocultivation with sols of citrate nanoceria (CeO-NPs-1) at a concentration of 10-3-10-4 M.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Cério / Nanopartículas Limite: Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Federação Russa

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Cério / Nanopartículas Limite: Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Federação Russa