Your browser doesn't support javascript.
loading
Motility induced phase separation of deformable cells.
Hopkins, Austin; Loewe, Benjamin; Chiang, Michael; Marenduzzo, Davide; Marchetti, M Cristina.
Afiliação
  • Hopkins A; Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA. austinhopkins@ucsb.edu.
  • Loewe B; School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
  • Chiang M; School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
  • Marenduzzo D; School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
  • Marchetti MC; Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA. austinhopkins@ucsb.edu.
Soft Matter ; 19(42): 8172-8178, 2023 Nov 01.
Article em En | MEDLINE | ID: mdl-37850477
Using a multi-phase field model, we examine how particle deformability, which is a proxy for cell stiffness, affects motility induced phase separation (MIPS). We show that purely repulsive deformable, i.e., squishy, cells phase separate more effectively than their rigid counterparts. This can be understood as due to the fact that deformability increases the effective duration of collisions. In addition, the dense regions become increasingly disordered as deformability increases. Our results contextualize the applicability of MIPS to biological systems and have implications for how cells in biological systems may self-organize.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Soft Matter Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Soft Matter Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos