Your browser doesn't support javascript.
loading
ProRefiner: an entropy-based refining strategy for inverse protein folding with global graph attention.
Zhou, Xinyi; Chen, Guangyong; Ye, Junjie; Wang, Ercheng; Zhang, Jun; Mao, Cong; Li, Zhanwei; Hao, Jianye; Huang, Xingxu; Tang, Jin; Heng, Pheng Ann.
Afiliação
  • Zhou X; Department of Computer Science and Engineering, The Chinese University of Hong Kong, Central Ave, Hong Kong, China.
  • Chen G; Zhejiang Lab, Kechuang Avenue, Hangzhou, China. gychen@zhejianglab.com.
  • Ye J; Noah's Ark Lab, Huawei, Shenzhen, China.
  • Wang E; Zhejiang Lab, Kechuang Avenue, Hangzhou, China.
  • Zhang J; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
  • Mao C; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
  • Li Z; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
  • Hao J; Zhejiang Lab, Kechuang Avenue, Hangzhou, China.
  • Huang X; Noah's Ark Lab, Huawei, Shenzhen, China.
  • Tang J; Zhejiang Lab, Kechuang Avenue, Hangzhou, China.
  • Heng PA; Zhejiang Lab, Kechuang Avenue, Hangzhou, China.
Nat Commun ; 14(1): 7434, 2023 Nov 16.
Article em En | MEDLINE | ID: mdl-37973874
Inverse Protein Folding (IPF) is an important task of protein design, which aims to design sequences compatible with a given backbone structure. Despite the prosperous development of algorithms for this task, existing methods tend to rely on noisy predicted residues located in the local neighborhood when generating sequences. To address this limitation, we propose an entropy-based residue selection method to remove noise in the input residue context. Additionally, we introduce ProRefiner, a memory-efficient global graph attention model to fully utilize the denoised context. Our proposed method achieves state-of-the-art performance on multiple sequence design benchmarks in different design settings. Furthermore, we demonstrate the applicability of ProRefiner in redesigning Transposon-associated transposase B, where six out of the 20 variants we propose exhibit improved gene editing activity.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Algoritmos / Proteínas Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Algoritmos / Proteínas Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China