ProRefiner: an entropy-based refining strategy for inverse protein folding with global graph attention.
Nat Commun
; 14(1): 7434, 2023 Nov 16.
Article
em En
| MEDLINE
| ID: mdl-37973874
Inverse Protein Folding (IPF) is an important task of protein design, which aims to design sequences compatible with a given backbone structure. Despite the prosperous development of algorithms for this task, existing methods tend to rely on noisy predicted residues located in the local neighborhood when generating sequences. To address this limitation, we propose an entropy-based residue selection method to remove noise in the input residue context. Additionally, we introduce ProRefiner, a memory-efficient global graph attention model to fully utilize the denoised context. Our proposed method achieves state-of-the-art performance on multiple sequence design benchmarks in different design settings. Furthermore, we demonstrate the applicability of ProRefiner in redesigning Transposon-associated transposase B, where six out of the 20 variants we propose exhibit improved gene editing activity.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Proteínas
Idioma:
En
Revista:
Nat Commun
Assunto da revista:
BIOLOGIA
/
CIENCIA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China