Your browser doesn't support javascript.
loading
Deterministic effect of oxygen level variation on shaping antibiotic resistome.
Bombaywala, Sakina; Bajaj, Abhay; Dafale, Nishant A.
Afiliação
  • Bombaywala S; Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
  • Bajaj A; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226001, India.
  • Dafale NA; Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address: na_dafale@neeri.res.in.
J Hazard Mater ; 465: 133047, 2024 03 05.
Article em En | MEDLINE | ID: mdl-38000281
ABSTRACT
An increase in acquisition of antibiotic resistance genes (ARGs) by pathogens under antibiotic selective pressure poses public health threats. Sub-inhibitory antibiotics induce bacteria to generate reactive oxygen species (ROS) dependent on dissolved oxygen (DO) levels, while molecular connection between ROS-mediated ARG emergence through DNA damage and metabolic changes remains elusive. Thus, the study investigates antibiotic resistome dynamics, microbiome shift, and pathogen distribution in hyperoxic (5-7 mg L-1), normoxic (2-4 mg L-1), and hypoxic (0.5-1 mg L-1) conditions using lab-scale bioreactor. Composite inoculums in the reactor were designed to represent comprehensive microbial community and AR profile from selected activated sludge. RT-qPCR and metagenomic analysis showed an increase in ARG count (100.98 ppm) with enrichment of multidrug efflux pumps (acrAB, mexAB) in hyperoxic condition. Conversely, total ARGs decreased (0.11 ppm) under hypoxic condition marked by a major decline in int1 abundance. Prevalence of global priority pathogens increased in hyperoxic (22.5%), compared to hypoxic (0.9%) wherein major decrease were observed in Pseudomonas, Shigella, and Borrelia. The study observed an increase in superoxide dismutase (sodA, sodB), DNA repair genes (nfo, polA, recA, recB), and ROS (10.4 µmol L-1) in adapted biomass with spiked antibiotics. This suggests oxidative damage that facilitates stress-induced mutagenesis providing evidence for observed hyperoxic enrichment of ARGs. Moreover, predominance of catalase (katE, katG) likely limit oxidative damage that deplete ARG breeding in hypoxic condition. The study proposes a link between oxygen levels and AR development that offers insights into mitigation and intervention of AR by controlling oxygen-related stress and strategic selection of bacterial communities.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Genes Bacterianos / Antibacterianos Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Genes Bacterianos / Antibacterianos Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia