Your browser doesn't support javascript.
loading
Stabilizing Undercoordinated Zn Active Sites through Confinement in CeO2 Nanotubes for Efficient Electrochemical CO2 Reduction.
Guo, Si-Tong; Du, Yu-Wei; Luo, Huihua; Zhu, Ziyin; Ouyang, Ting; Liu, Zhao-Qing.
Afiliação
  • Guo ST; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Gua
  • Du YW; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Gua
  • Luo H; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Gua
  • Zhu Z; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Gua
  • Ouyang T; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Gua
  • Liu ZQ; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Gua
Angew Chem Int Ed Engl ; 63(2): e202314099, 2024 Jan 08.
Article em En | MEDLINE | ID: mdl-38059828
ABSTRACT
Zn-based catalysts hold great potential to replace the noble metal-based ones for CO2 reduction reaction (CO2 RR). Undercoordinated Zn (Znδ+ ) sites may serve as the active sites for enhanced CO production by optimizing the binding energy of *COOH intermediates. However, there is relatively less exploration into the dynamic evolution and stability of Znδ+ sites during CO2 reduction process. Herein, we present ZnO, Znδ+ /ZnO and Zn as catalysts by varying the applied reduction potential. Theoretical studies reveal that Znδ+ sites could suppress HER and HCOOH production to induce CO generation. And Znδ+ /ZnO presents the highest CO selectivity (FECO 70.9 % at -1.48 V vs. RHE) compared to Zn and ZnO. Furthermore, we propose a CeO2 nanotube with confinement effect and Ce3+ /Ce4+ redox to stabilize Znδ+ species. The hollow core-shell structure of the Znδ+ /ZnO/CeO2 catalyst enables to extremely expose electrochemically active area while maintaining the Znδ+ sites with long-time stability. Certainly, the target catalyst affords a FECO of 76.9 % at -1.08 V vs. RHE and no significant decay of CO selectivity in excess of 18 h.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article