Your browser doesn't support javascript.
loading
Multiscale Modeling of Aqueous Electric Double Layers.
Becker, Maximilian; Loche, Philip; Rezaei, Majid; Wolde-Kidan, Amanuel; Uematsu, Yuki; Netz, Roland R; Bonthuis, Douwe Jan.
Afiliação
  • Becker M; Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
  • Loche P; Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
  • Rezaei M; Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
  • Wolde-Kidan A; Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
  • Uematsu Y; Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany.
  • Netz RR; Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
  • Bonthuis DJ; Department of Physics and Information Technology, Kyushu Institute of Technology, 820-8502 Iizuka, Japan.
Chem Rev ; 124(1): 1-26, 2024 Jan 10.
Article em En | MEDLINE | ID: mdl-38118062
ABSTRACT
From the stability of colloidal suspensions to the charging of electrodes, electric double layers play a pivotal role in aqueous systems. The interactions between interfaces, water molecules, ions and other solutes making up the electrical double layer span length scales from Ångströms to micrometers and are notoriously complex. Therefore, explaining experimental observations in terms of the double layer's molecular structure has been a long-standing challenge in physical chemistry, yet recent advances in simulations techniques and computational power have led to tremendous progress. In particular, the past decades have seen the development of a multiscale theoretical framework based on the combination of quantum density functional theory, force-field based simulations and continuum theory. In this Review, we discuss these theoretical developments and make quantitative comparisons to experimental results from, among other techniques, sum-frequency generation, atomic-force microscopy, and electrokinetics. Starting from the vapor/water interface, we treat a range of qualitatively different types of surfaces, varying from soft to solid, from hydrophilic to hydrophobic, and from charged to uncharged.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Chem Rev Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Chem Rev Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha