Your browser doesn't support javascript.
loading
Regulatory mechanisms controlling store-operated calcium entry.
Kodakandla, Goutham; Akimzhanov, Askar M; Boehning, Darren.
Afiliação
  • Kodakandla G; Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.
  • Akimzhanov AM; Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, United States.
  • Boehning D; Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.
Front Physiol ; 14: 1330259, 2023.
Article em En | MEDLINE | ID: mdl-38169682
ABSTRACT
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ERPM junctions. At these ERPM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium release-activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Physiol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Physiol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos