Inhibition of the STIM1/Orai1 Signaling Pathway by Glycine Betaine Mitigates Myocardial Hypertrophy in Spontaneous Hypertension Rats.
Cardiol Res
; 14(6): 453-463, 2023 Dec.
Article
em En
| MEDLINE
| ID: mdl-38187515
ABSTRACT
Background:
Spontaneous hypertension is a leading risk factor for cardiovascular diseases morbidity and mortality. Glycine betaine (GB) is a natural vitamin that has the potential to lower blood pressure. This work attempted to investigate the role and mechanisms of GB in spontaneous hypertension.Methods:
Spontaneously hypertensive rats (SHRs) were administrated with 100, 200, or 400 mg/kg of GB by gavage or combined with by injection of lentivirus-mediated STIM1 overexpression vector. The heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart weight/body weight (HW/BW) of rats were monitored. The pathological changes in myocardium were examined by hematoxylin and eosin staining and Masson staining. The expression of genes and proteins was detected by quantitative real-time PCR, western blotting, and immunohistochemistry.Results:
GB at 200 and 400 mg/kg reduced the HR, SBP, DBP and HW/BW in SHRs. GB decreased the cross-sectional area and fibrotic area in the myocardium and downregulated the expression of atrial natriuretic peptide (ANP) and ß-myosin heavy chain (ß-MHC) in the myocardium of SHRs. It indicated that GB treatment effectively alleviated myocardial hypertrophy in SHRs. Additionally, GB treatment repressed the expression of stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel protein 1 (Orai1) in the myocardium of SHRs. STIM1 overexpression reversed GB treatment-mediated inhibition of myocardial hypertrophy in SHRs.Conclusions:
In conclusion, GB repressed STIM1/Orai1 signaling pathway, which contributed to alleviating myocardial hypertrophy in SHRs. Thus, our study provides a theoretical basis for GB as an antihypertensive drug.
Texto completo:
1
Bases de dados:
MEDLINE
Tipo de estudo:
Risk_factors_studies
Idioma:
En
Revista:
Cardiol Res
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China