Your browser doesn't support javascript.
loading
Non-Contact Thermal and Acoustic Sensors with Embedded Artificial Intelligence for Point-of-Care Diagnostics.
Rodríguez-Cobo, Luís; Reyes-Gonzalez, Luís; Algorri, José Francisco; Díez-Del-Valle Garzón, Sara; García-García, Roberto; López-Higuera, José Miguel; Cobo, Adolfo.
Afiliação
  • Rodríguez-Cobo L; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.
  • Reyes-Gonzalez L; Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain.
  • Algorri JF; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.
  • Díez-Del-Valle Garzón S; Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain.
  • García-García R; Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain.
  • López-Higuera JM; Ambar Telecomunicaciones S.L., 39011 Santander, Spain.
  • Cobo A; Centro de Innovación de Servicios Gestionados Avanzados (CiSGA) S.L., 39011 Santander, Spain.
Sensors (Basel) ; 24(1)2023 Dec 26.
Article em En | MEDLINE | ID: mdl-38202998
ABSTRACT
This work involves exploring non-invasive sensor technologies for data collection and preprocessing, specifically focusing on novel thermal calibration methods and assessing low-cost infrared radiation sensors for facial temperature analysis. Additionally, it investigates innovative approaches to analyzing acoustic signals for quantifying coughing episodes. The research integrates diverse data capture technologies to analyze them collectively, considering their temporal evolution and physical attributes, aiming to extract statistically significant relationships among various variables for valuable insights. The study delineates two distinct aspects cough detection employing a microphone and a neural network, and thermal sensors employing a calibration curve to refine their output values, reducing errors within a specified temperature range. Regarding control units, the initial implementation with an ESP32 transitioned to a Raspberry Pi model 3B+ due to neural network integration issues. A comprehensive testing is conducted for both fever and cough detection, ensuring robustness and accuracy in each scenario. The subsequent work involves practical experimentation and interoperability tests, validating the proof of concept for each system component. Furthermore, this work assesses the technical specifications of the prototype developed in the preceding tasks. Real-time testing is performed for each symptom to evaluate the system's effectiveness. This research contributes to the advancement of non-invasive sensor technologies, with implications for healthcare applications such as remote health monitoring and early disease detection.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Inteligência Artificial / Redes Neurais de Computação Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Inteligência Artificial / Redes Neurais de Computação Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha