Your browser doesn't support javascript.
loading
Influence of perinatal and childhood exposure to tobacco and mercury in children's gut microbiota.
Pérez-Castro, Sonia; D'Auria, Giuseppe; Llambrich, Maria; Fernández-Barrés, Sílvia; Lopez-Espinosa, Maria-Jose; Llop, Sabrina; Regueiro, Benito; Bustamante, Mariona; Francino, M Pilar; Vrijheid, Martine; Maitre, Léa.
Afiliação
  • Pérez-Castro S; Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Vigo, Spain.
  • D'Auria G; Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
  • Llambrich M; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
  • Fernández-Barrés S; Sequencing and Bioinformatics Service, Fundació per al Foment de la Investigació Sanitària i Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.
  • Lopez-Espinosa MJ; ISGlobal, Barcelona, Spain.
  • Llop S; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
  • Regueiro B; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
  • Bustamante M; ISGlobal, Barcelona, Spain.
  • Francino MP; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
  • Vrijheid M; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
  • Maitre L; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain.
Front Microbiol ; 14: 1258988, 2023.
Article em En | MEDLINE | ID: mdl-38249448
ABSTRACT

Background:

Early life determinants of the development of gut microbiome composition in infants have been widely investigated; however, if early life pollutant exposures, such as tobacco or mercury, have a persistent influence on the gut microbial community, its stabilization at later childhood remains largely unknown.

Objective:

In this exposome-wide study, we aimed at identifying the contribution of exposure to tobacco and mercury from the prenatal period to childhood, to individual differences in the fecal microbiome composition of 7-year-old children, considering co-exposure to a width of established lifestyle and clinical determinants.

Methods:

Gut microbiome was studied by 16S rRNA amplicon sequencing in 151 children at the genus level. Exposure to tobacco was quantified during pregnancy through questionnaire (active tobacco consumption, second-hand smoking -SHS) and biomonitoring (urinary cotinine) at 4 years (urinary cotinine, SHS) and 7 years (SHS). Exposure to mercury was quantified during pregnancy (cord blood) and at 4 years (hair). Forty nine other potential environmental determinants (12 at pregnancy/birth/infancy, 15 at 4 years and 22 at 7 years, such as diet, demographics, quality of living/social environment, and clinical records) were registered. We used multiple models to determine microbiome associations with pollutants including multi-determinant multivariate analysis of variance and linear correlations (wUnifrac, Bray-Curtis and Aitchison ß-diversity distances), single-pollutant permutational multivariate analysis of variance adjusting for co-variates (Aitchison), and multivariable association model with single taxa (MaAsLin2; genus). Sensitivity analysis was performed including genetic data in a subset of 107 children.

Results:

Active smoking in pregnancy was systematically associated with microbiome composition and ß-diversity (R2 2-4%, p < 0.05, Aitchison), independently of other co-determinants. However, in the adjusted single pollutant models (PERMANOVA), we did not find any significant association. An increased relative abundance of Dorea and decreased relative abundance of Akkermansia were associated with smoking during pregnancy (q < 0.05).

Discussion:

Our findings suggest a long-term sustainable effect of prenatal tobacco exposure on the children's gut microbiota. This effect was not found for mercury exposure or tobacco exposure during childhood. Assessing the role of these exposures on the children's microbiota, considering multiple environmental factors, should be further investigated.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Microbiol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Microbiol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha