Your browser doesn't support javascript.
loading
Piezoelectric Polymer Solid Electrolyte Integrating Electromechanical Coupling and Ferroelectric Polarization Effects.
Kang, Junbao; Zhao, Jiaxuan; Jiang, Peng; Gao, Lu; Zhao, Yixia; Cheng, Bowen; Deng, Nanping; Kang, Weimin.
Afiliação
  • Kang J; State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
  • Zhao J; State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
  • Jiang P; State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
  • Gao L; State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
  • Zhao Y; State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
  • Cheng B; State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
  • Deng N; State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
  • Kang W; State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
Small ; 20(27): e2308058, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38286621
ABSTRACT
The unsatisfactory lithium-ion conductivity (σ) and limited mechanical strength of polymer solid electrolytes hinder their wide applications in solid-state lithium metal batteries (SSLMBs). Here, a thin piezoelectric polymer solid electrolyte integrating electromechanical coupling and ferroelectric polarization effects has been designed and prepared to achieve long-term stable cycling of SSLMBs. The ferroelectric Bi4Ti3O12 nanoparticle (BIT NPs) loaded poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) piezoelectric nanofibers (B-P NFs) membranes are introduced into the poly(ethylene oxide) (PEO) matrix, endowing the composite electrolyte with unique polarization and piezoelectric effects. The piezoelectric nanofiber membrane with a 3D network structure not only promotes the dissociation of lithium (Li) salts through the polarization effect but also cleverly utilizes the coupling effect of a mechanical stress-local electric field to achieve dynamic regulation of the Li electroplating process. Through the corresponding experimental tests and density functional theory calculations, the intrinsic mechanism of piezoelectric electrolytes improving σ and suppressing Li dendrites is fully revealed. The obtained piezoelectric electrolyte has achieved stable cycling of LiFePO4 batteries over 2000 cycles and has also shown good practical application potential in flexible pouch batteries.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article