Your browser doesn't support javascript.
loading
Heterogeneous reactions significantly contribute to the atmospheric formation of nitrated aromatic compounds during the haze episode in urban Beijing.
Cheng, Zhen; Qiu, Xinghua; Li, Ailin; Chai, Qianqian; Shi, Xiaodi; Ge, Yanli; Koenig, Theodore K; Zheng, Yan; Chen, Shiyi; Hu, Min; Ye, Chunxiang; Cheung, Rico K Y; Modini, Robin L; Chen, Qi; Shang, Jing; Zhu, Tong.
Afiliação
  • Cheng Z; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
  • Qiu X; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China. Electronic address: xhqiu@pku.edu.cn.
  • Li A; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
  • Chai Q; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
  • Shi X; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
  • Ge Y; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
  • Koenig TK; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
  • Zheng Y; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
  • Chen S; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
  • Hu M; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
  • Ye C; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
  • Cheung RKY; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
  • Modini RL; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
  • Chen Q; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
  • Shang J; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
  • Zhu T; SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
Sci Total Environ ; 917: 170612, 2024 Mar 20.
Article em En | MEDLINE | ID: mdl-38307269
ABSTRACT
Nitrated aromatic compounds (NACs) are key components of air pollution; however, due to the presence of complex mixtures of primary and secondary species, especially in urban environments, their atmospheric formation is poorly understood. Here we conducted a field campaign during a winter haze episode in urban Beijing, China to monitor gaseous and particulate NACs at 2-h time resolution. Through a standard-independent non-targeted approach, a total of 238 NACs were screened, of which 127 species were assigned chemical formula and 25 structures were confirmed. Four main classes were identified nitrated aromatic hydrocarbons, nitrophenols, oxygenated nitrated aromatic compounds, and nitrated heterocyclic aromatic compounds. Hierarchical clustering analysis revealed disparate temporal variances of diurnal or nocturnal elevation, among which different nitration formations were captured, i.e., daytime photochemical oxidation and nighttime heterogeneous reactions. Isomeric information, particularly the substitution position of the nitro group on biphenyl, further demonstrated a potential heterogeneous mechanism of electrophilic nitration by NO2+. Assisted by source apportionment, we found that nighttime heterogeneous reactions significantly contributed to NAC formation, e.g., 31.3 % and 60.8 %, respectively, to 2-nitrofluoranthene and 2-nitropyrene, which were previously considered as classical daytime gas-phase products. This study provides comprehensive information on urban NAC species and highlights the importance of unheeded heterogeneous reactions in the atmosphere.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article