Your browser doesn't support javascript.
loading
Leveraging electronic health records and knowledge networks for Alzheimer's disease prediction and sex-specific biological insights.
Tang, Alice S; Rankin, Katherine P; Cerono, Gabriel; Miramontes, Silvia; Mills, Hunter; Roger, Jacquelyn; Zeng, Billy; Nelson, Charlotte; Soman, Karthik; Woldemariam, Sarah; Li, Yaqiao; Lee, Albert; Bove, Riley; Glymour, Maria; Aghaeepour, Nima; Oskotsky, Tomiko T; Miller, Zachary; Allen, Isabel E; Sanders, Stephan J; Baranzini, Sergio; Sirota, Marina.
Afiliação
  • Tang AS; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA. alice.tang@ucsf.edu.
  • Rankin KP; Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, San Francisco and Berkeley, CA, USA. alice.tang@ucsf.edu.
  • Cerono G; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
  • Miramontes S; Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
  • Mills H; Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
  • Roger J; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
  • Zeng B; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
  • Nelson C; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
  • Soman K; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
  • Woldemariam S; Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
  • Li Y; Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
  • Lee A; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
  • Bove R; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
  • Glymour M; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
  • Aghaeepour N; Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
  • Oskotsky TT; Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University, Palo Alto, CA, USA.
  • Miller Z; Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University, Palo Alto, CA, USA.
  • Allen IE; Department of Pediatrics, Stanford University, Palo Alto, CA, USA.
  • Sanders SJ; Department of Biomedical Data Science, Stanford University, Palo Alto, CA, USA.
  • Baranzini S; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
  • Sirota M; Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
Nat Aging ; 4(3): 379-395, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38383858
ABSTRACT
Identification of Alzheimer's disease (AD) onset risk can facilitate interventions before irreversible disease progression. We demonstrate that electronic health records from the University of California, San Francisco, followed by knowledge networks (for example, SPOKE) allow for (1) prediction of AD onset and (2) prioritization of biological hypotheses, and (3) contextualization of sex dimorphism. We trained random forest models and predicted AD onset on a cohort of 749 individuals with AD and 250,545 controls with a mean area under the receiver operating characteristic of 0.72 (7 years prior) to 0.81 (1 day prior). We further harnessed matched cohort models to identify conditions with predictive power before AD onset. Knowledge networks highlight shared genes between multiple top predictors and AD (for example, APOE, ACTB, IL6 and INS). Genetic colocalization analysis supports AD association with hyperlipidemia at the APOE locus, as well as a stronger female AD association with osteoporosis at a locus near MS4A6A. We therefore show how clinical data can be utilized for early AD prediction and identification of personalized biological hypotheses.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Doença de Alzheimer Limite: Female / Humans / Male País/Região como assunto: America do norte Idioma: En Revista: Nat Aging Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Doença de Alzheimer Limite: Female / Humans / Male País/Região como assunto: America do norte Idioma: En Revista: Nat Aging Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos