Your browser doesn't support javascript.
loading
Spectral Flow Cytometry Methods and Pipelines for Comprehensive Immunoprofiling of Human Peripheral Blood and Bone Marrow.
Spasic, Milos; Ogayo, Esther R; Parsons, Adrienne M; Mittendorf, Elizabeth A; van Galen, Peter; McAllister, Sandra S.
Afiliação
  • Spasic M; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
  • Ogayo ER; Department of Medicine, Harvard Medical School, Boston, Massachusetts.
  • Parsons AM; Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts.
  • Mittendorf EA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
  • van Galen P; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
  • McAllister SS; Department of Medicine, Harvard Medical School, Boston, Massachusetts.
Cancer Res Commun ; 4(3): 895-910, 2024 Mar 25.
Article em En | MEDLINE | ID: mdl-38466569
ABSTRACT
Profiling hematopoietic and immune cells provides important information about disease risk, disease status, and therapeutic responses. Spectral flow cytometry enables high-dimensional single-cell evaluation of large cohorts in a high-throughput manner. Here, we designed, optimized, and implemented new methods for deep immunophenotyping of human peripheral blood and bone marrow by spectral flow cytometry. Two blood antibody panels capture 48 cell-surface markers to assess more than 58 cell phenotypes, including subsets of T cells, B cells, monocytes, natural killer (NK) cells, and dendritic cells, and their respective markers of exhaustion, activation, and differentiation in less than 2 mL of blood. A bone marrow antibody panel captures 32 markers for 35 cell phenotypes, including stem/progenitor populations, T-cell subsets, dendritic cells, NK cells, and myeloid cells in a single tube. We adapted and developed innovative flow cytometric analysis algorithms, originally developed for single-cell genomics, to improve data integration and visualization. We also highlight technical considerations for users to ensure data fidelity. Our protocol and analysis pipeline accurately identifies rare cell types, discerns differences in cell abundance and phenotype across donors, and shows concordant immune landscape trends in patients with known hematologic malignancy.

SIGNIFICANCE:

This study introduces optimized methods and analysis algorithms that enhance capabilities in comprehensive immunophenotyping of human blood and bone marrow using spectral flow cytometry. This approach facilitates detection of rare cell types, enables measurement of cell variations across donors, and provides proof-of-concept in identifying known hematologic malignancies. By unlocking complexities of hematopoietic and immune landscapes at the single-cell level, this advancement holds potential for understanding disease states and therapeutic responses.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Medula Óssea / Monócitos Limite: Humans Idioma: En Revista: Cancer Res Commun Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Medula Óssea / Monócitos Limite: Humans Idioma: En Revista: Cancer Res Commun Ano de publicação: 2024 Tipo de documento: Article