Your browser doesn't support javascript.
loading
Catalyst-Free α-Acetyl Cinnamate/Acetoacetate Exchange to Enable High Creep-Resistant Vitrimers.
Feng, Hongzhi; Wang, Sheng; Lim, Jason Y C; Li, Bofan; Rusli, Wendy; Liu, Feng; Hadjichristidis, Nikos; Li, Zibiao; Zhu, Jin.
Afiliação
  • Feng H; Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
  • Wang S; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
  • Lim JYC; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore.
  • Li B; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore.
  • Rusli W; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore.
  • Liu F; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore.
  • Hadjichristidis N; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore.
  • Li Z; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore.
  • Zhu J; Polymer Synthesis Laboratory, Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
Angew Chem Int Ed Engl ; 63(20): e202400955, 2024 May 13.
Article em En | MEDLINE | ID: mdl-38489506
ABSTRACT
Vitrimers represent an emerging class of polymeric materials that combine the desirable characteristics of both thermoplastics and thermosets achieved through the design of dynamic covalent bonds within the polymer networks. However, these materials are prone to creep due to the inherent instability of dynamic covalent bonds. Consequently, there are pressing demands for the development of robust and stable dynamic covalent chemistries. Here, we report a catalyst-free α-acetyl cinnamate/acetoacetate (α-AC/A) exchange reaction to develop vitrimers with remarkable creep resistance. Small-molecule model studies revealed that the α-AC/A exchange occurred at temperatures above 140 °C in bulk, whereas at 120 °C, this reaction was absent. For demonstration in the case of polymers, copolymers derived from common vinyl monomers were crosslinked with terephthalaldehyde to produce α-AC/A vitrimers with tunable thermal and mechanical performance. All resulting α-AC/A vitrimers exhibited high stability, especially in terms of creep resistance at 120 °C, while retaining commendable reprocessability when subjected to high temperatures. This work showcases the α-AC/A exchange reaction as a novel and robust dynamic covalent chemistry capable of imparting both reprocessability and high stability to cross-linked networks.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article