ECM stiffness affects cargo sorting into MSC-EVs to regulate their secretion and uptake behaviors.
J Nanobiotechnology
; 22(1): 124, 2024 Mar 21.
Article
em En
| MEDLINE
| ID: mdl-38515095
ABSTRACT
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have garnered extensive attention as natural product-based nanomedicines and potential drug delivery vehicles. However, the specific mechanism for regulating MSC-EVs secretion and delivery remains unclear. Here, we demonstrate that extracellular matrix (ECM) stiffness regulates the secretion and delivery of EVs by affecting MSCs' cargo sorting mechanically. Using multi-omics analysis, we found that a decrease in ECM stiffness impeded the sorting of vesicular transport-related proteins and autophagy-related lipids into MSC-EVs, impairing their secretion and subsequent uptake by macrophages. Hence, MSC-EVs with different secretion and uptake behaviors can be produced by changing the stiffness of culture substrates. This study provides new insights into MSC-EV biology and establishes a connection between MSC-EV behaviors and ECM from a biophysical perspective, providing a basis for the rational design of biomedical materials.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Células-Tronco Mesenquimais
/
Vesículas Extracelulares
Idioma:
En
Revista:
J Nanobiotechnology
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China