Transcriptomic analysis of Anopheles gambiae from Benin reveals overexpression of salivary and cuticular proteins associated with cross-resistance to pyrethroids and organophosphates.
BMC Genomics
; 25(1): 348, 2024 Apr 06.
Article
em En
| MEDLINE
| ID: mdl-38582836
ABSTRACT
BACKGROUND:
Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl).RESULTS:
Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin 51.7% mortality; 2X alphacypermethrin 47.4%) than Bassila (1X deltamethrin 70.7%; 1X alphacypermethrin 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X 48.3% in Bassila and 1X 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups.CONCLUSION:
Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Piretrinas
/
Inseticidas
/
Malária
/
Anopheles
/
Nitrilas
Limite:
Animals
País/Região como assunto:
Africa
Idioma:
En
Revista:
BMC Genomics
Assunto da revista:
GENETICA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Benim