An AI-based approach for modeling the synergy between radiotherapy and immunotherapy.
Sci Rep
; 14(1): 8250, 2024 04 08.
Article
em En
| MEDLINE
| ID: mdl-38589494
ABSTRACT
Personalized, ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is designed to administer tumoricidal doses in a pulsed mode with extended intervals, spanning weeks or months. This approach leverages longer intervals to adapt the treatment plan based on tumor changes and enhance immune-modulated effects. In this investigation, we seek to elucidate the potential synergy between combined PULSAR and PD-L1 blockade immunotherapy using experimental data from a Lewis Lung Carcinoma (LLC) syngeneic murine cancer model. Employing a long short-term memory (LSTM) recurrent neural network (RNN) model, we simulated the treatment response by treating irradiation and anti-PD-L1 as external stimuli occurring in a temporal sequence. Our findings demonstrate that (1) The model can simulate tumor growth by integrating various parameters such as timing and dose, and (2) The model provides mechanistic interpretations of a "causal relationship" in combined treatment, offering a completely novel perspective. The model can be utilized for in-silico modeling, facilitating exploration of innovative treatment combinations to optimize therapeutic outcomes. Advanced modeling techniques, coupled with additional efforts in biomarker identification, may deepen our understanding of the biological mechanisms underlying the combined treatment.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Radiocirurgia
/
DEAE-Dextrano
Limite:
Animals
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Estados Unidos