Your browser doesn't support javascript.
loading
Phospholipid Type Regulates Protein Corona Composition and In Vivo Performance of Lipid Nanodiscs.
Pan, Feng; Liu, Mengyuan; Li, Guanghui; Chen, Boqian; Chu, Yuxiu; Yang, Yang; Wu, Ercan; Yu, Yifei; Lin, Shiqi; Ding, Tianhao; Wei, Xiaoli; Zhan, Changyou; Qian, Jun.
Afiliação
  • Pan F; School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China.
  • Liu M; School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China.
  • Li G; School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China.
  • Chen B; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
  • Chu Y; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
  • Yang Y; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
  • Wu E; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
  • Yu Y; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
  • Lin S; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
  • Ding T; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
  • Wei X; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
  • Zhan C; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
  • Qian J; School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China.
Mol Pharm ; 21(5): 2272-2283, 2024 May 06.
Article em En | MEDLINE | ID: mdl-38607681
ABSTRACT
Over the years, there has been significant interest in PEGylated lipid-based nanocarriers within the drug delivery field. The inevitable interplay between the nanocarriers and plasma protein plays a pivotal role in their in vivo biological fate. Understanding the factors influencing lipid-based nanocarrier and protein corona interactions is of paramount importance in the design and clinical translation of these nanocarriers. Herein, discoid-shaped lipid nanodiscs (sNDs) composed of different phospholipids with varied lipid tails and head groups were fabricated. We investigated the impact of phospholipid components on the interaction between sNDs and serum proteins, particle stability, and biodistribution. The results showed that all of these lipid nanodiscs remained stable over a 15 day storage period, while their stability in the blood serum demonstrated significant differences. The sND composed of POPG exhibited the least stability due to its potent complement activation capability, resulting in rapid blood clearance. Furthermore, a negative correlation between the complement activation capability and serum stability was identified. Pharmacokinetic and biodistribution experiments indicated that phospholipid composition did not influence the capability of sNDs to evade the accelerated blood clearance phenomenon. Complement deposition on the sND was inversely associated with the area under the curve. Additionally, all lipid nanodiscs exhibited dominant adsorption of apolipoprotein. Remarkably, the POPC-based lipid nanodisc displayed a significantly higher deposition of apolipoprotein E, contributing to an obvious brain distribution, which provides a promising tool for brain-targeted drug delivery.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Fosfolipídeos / Nanopartículas / Coroa de Proteína Limite: Animals Idioma: En Revista: Mol Pharm Assunto da revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Fosfolipídeos / Nanopartículas / Coroa de Proteína Limite: Animals Idioma: En Revista: Mol Pharm Assunto da revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article