Your browser doesn't support javascript.
loading
HP3D-V2V: High-Precision 3D Object Detection Vehicle-to-Vehicle Cooperative Perception Algorithm.
Chen, Hongmei; Wang, Haifeng; Liu, Zilong; Gu, Dongbing; Ye, Wen.
Afiliação
  • Chen H; Faculty of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China.
  • Wang H; Faculty of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China.
  • Liu Z; School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK.
  • Gu D; School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK.
  • Ye W; Division of Mechanics and Acoustics, National Institute of Metrology, Beijing 102200, China.
Sensors (Basel) ; 24(7)2024 Mar 28.
Article em En | MEDLINE | ID: mdl-38610381
ABSTRACT
Cooperative perception in the field of connected autonomous vehicles (CAVs) aims to overcome the inherent limitations of single-vehicle perception systems, including long-range occlusion, low resolution, and susceptibility to weather interference. In this regard, we propose a high-precision 3D object detection V2V cooperative perception algorithm. The algorithm utilizes a voxel grid-based statistical filter to effectively denoise point cloud data to obtain clean and reliable data. In addition, we design a feature extraction network based on the fusion of voxels and PointPillars and encode it to generate BEV features, which solves the spatial feature interaction problem lacking in the PointPillars approach and enhances the semantic information of the extracted features. A maximum pooling technique is used to reduce the dimensionality and generate pseudoimages, thereby skipping complex 3D convolutional computation. To facilitate effective feature fusion, we design a feature level-based crossvehicle feature fusion module. Experimental validation is conducted using the OPV2V dataset to assess vehicle coperception performance and compare it with existing mainstream coperception algorithms. Ablation experiments are also carried out to confirm the contributions of this approach. Experimental results show that our architecture achieves lightweighting with a higher average precision (AP) than other existing models.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China