Ordering dynamics of nonlinear voter models.
Phys Rev E
; 109(3-1): 034307, 2024 Mar.
Article
em En
| MEDLINE
| ID: mdl-38632723
ABSTRACT
We study the ordering dynamics of nonlinear voter models with multiple states, also providing a discussion of the two-state model. The rate with which an individual adopts an opinion scales as the qth power of the number of the individual's neighbors in that state. For q>1 the dynamics favor the opinion held by the most agents. The ordering to consensus is driven by deterministic drift, and noise plays only a minor role. For q<1 the dynamics favors minority opinions, and for multistate models the ordering proceeds through a noise-driven succession of metastable states. Unlike linear multistate systems, the nonlinear model cannot be reduced to an effective two-state model. We find that the average density of active interfaces in the model with multiple opinion states does not show a single exponential decay in time for q<1, again at variance with the linear model. This highlights the special character of the conventional (linear) voter model, in which deterministic drift is absent. As part of our analysis, we develop a pair approximation for the multistate model on graphs, valid for any positive real value of q, improving on previous approximations for nonlinear two-state voter models.
Texto completo:
1
Bases de dados:
MEDLINE
Idioma:
En
Revista:
Phys Rev E
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Espanha