Your browser doesn't support javascript.
loading
Potential energy landscape of a flexible water model: Equation of state, configurational entropy, and Adam-Gibbs relationship.
Eltareb, Ali; Lopez, Gustavo E; Giovambattista, Nicolas.
Afiliação
  • Eltareb A; Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA.
  • Lopez GE; Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, New York 10016, USA.
  • Giovambattista N; Department of Chemistry, Lehman College of the City University of New York, Bronx, New York 10468, USA.
J Chem Phys ; 160(15)2024 Apr 21.
Article em En | MEDLINE | ID: mdl-38639318
ABSTRACT
The potential energy landscape (PEL) formalism is a tool within statistical mechanics that has been used in the past to calculate the equation of states (EOS) of classical rigid model liquids at low temperatures, where computer simulations may be challenging. In this work, we use classical molecular dynamics (MD) simulations and the PEL formalism to calculate the EOS of the flexible q-TIP4P/F water model. This model exhibits a liquid-liquid critical point (LLCP) in the supercooled regime, at (Pc = 150 MPa, Tc = 190 K, and ρc = 1.04 g/cm3) [using the reaction field technique]. The PEL-EOS of q-TIP4P/F water and the corresponding location of the LLCP are in very good agreement with the MD simulations. We show that the PEL of q-TIP4P/F water is Gaussian, which allows us to calculate the configurational entropy of the system, Sconf. The Sconf of q-TIP4P/F water is surprisingly similar to that reported previously for rigid water models, suggesting that intramolecular flexibility does not necessarily add roughness to the PEL. We also show that the Adam-Gibbs relation, which relates the diffusion coefficient D with Sconf, holds for the flexible q-TIP4P/F water model. Overall, our results indicate that the PEL formalism can be used to study molecular systems that include molecular flexibility, the common case in standard force fields. This is not trivial since the introduction of large bending/stretching mode frequencies is problematic in classical statistical mechanics. For example, as shown previously, we find that such high frequencies lead to unphysical (negative) entropy for q-TIP4P/F water when using classical statistical mechanics (yet, the PEL formalism can be applied successfully).

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: J Chem Phys / J. chem. phys / Journal of chemical physics Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: J Chem Phys / J. chem. phys / Journal of chemical physics Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos