Your browser doesn't support javascript.
loading
Boron-Catalyzed C1 Copolymerization of Arsonium and Sulfoxonium Ylides toward Unrepresented Structures and Fluorescence Properties.
Zhou, Mingtao; Hadjichristidis, Nikos.
Afiliação
  • Zhou M; Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and y (KAUST), Thuwal, 23955, Kingdom of, Saudi Arabia.
  • Hadjichristidis N; Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and y (KAUST), Thuwal, 23955, Kingdom of, Saudi Arabia.
Angew Chem Int Ed Engl ; 63(27): e202403527, 2024 Jul 01.
Article em En | MEDLINE | ID: mdl-38648110
ABSTRACT
The first synthesis of well-defined poly(methylene-co-1,1-diphenylpropenenylene) (C1-co-C1'), equivalent to poly(ethylene-co-diphenylbutadiene) copolymers was accomplished by C1 copolymerization of novel diphenylpropenyl triphenyl arsonium ylides (Ph2AY) and dimethylsulfoxonium methylide (Me2SY) using B-thexylborepane as initiator. All polymerization conditions, including feed ratio, temperature, and reaction time, were optimized. A series of photoluminescent poly(ethylene-co-diphenylbutadiene)s were synthesized at different feed ratios, opening a new synthetic horizon for poly(ethylene-co-disubstitutedbutadiene) copolymers. Notably, a new C1 segment, arising from a double bond rearrangement, was confirmed by NMR, resulting in an unprecedented two-monomer three-structure random terpolymer. An unexpected red-shift phenomenon in the fluorescence spectra was observed with increasing the ratio of Ph2AY in the copolymer. This shift is attributed to the aggregation of diphenylbutadiene segment, similar to through-space conjugation (TSC), likely induced by a decrease in the crystallinity of copolymers. Furthermore, another disubstituted allylic triphenyl arsonium ylides, (E)-2-phenylbutenyl triphenyl arsonium ylide (MePhAY) was also synthesized and investigated. These additional compounds expand the knowledge and the potential applications of such copolymerization techniques in advanced materials.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Arábia Saudita

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Arábia Saudita