Your browser doesn't support javascript.
loading
Methylation profiles at birth linked to early childhood obesity.
Lariviere, Delphine; Craig, Sarah J C; Paul, Ian M; Hohman, Emily E; Savage, Jennifer S; Wright, Robert O; Chiaromonte, Francesca; Makova, Kateryna D; Reimherr, Matthew L.
Afiliação
  • Lariviere D; Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA.
  • Craig SJC; Department of Biology, Penn State University, University Park, PA, USA.
  • Paul IM; Center for Medical Genomics, Penn State University, University Park, PA, USA.
  • Hohman EE; Center for Medical Genomics, Penn State University, University Park, PA, USA.
  • Savage JS; Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
  • Wright RO; Center for Childhood Obesity Research, Penn State University, University Park, PA, USA.
  • Chiaromonte F; Center for Childhood Obesity Research, Penn State University, University Park, PA, USA.
  • Makova KD; Nutrition Department, Penn State University, University Park, PA, USA.
  • Reimherr ML; Icahn School of Medicine, Mount Sinai, New York, NY, USA.
J Dev Orig Health Dis ; 15: e7, 2024 Apr 25.
Article em En | MEDLINE | ID: mdl-38660759
ABSTRACT
Childhood obesity represents a significant global health concern and identifying its risk factors is crucial for developing intervention programs. Many "omics" factors associated with the risk of developing obesity have been identified, including genomic, microbiomic, and epigenomic factors. Here, using a sample of 48 infants, we investigated how the methylation profiles in cord blood and placenta at birth were associated with weight outcomes (specifically, conditional weight gain, body mass index, and weight-for-length ratio) at age six months. We characterized genome-wide DNA methylation profiles using the Illumina Infinium MethylationEpic chip, and incorporated information on child and maternal health, and various environmental factors into the analysis. We used regression analysis to identify genes with methylation profiles most predictive of infant weight outcomes, finding a total of 23 relevant genes in cord blood and 10 in placenta. Notably, in cord blood, the methylation profiles of three genes (PLIN4, UBE2F, and PPP1R16B) were associated with all three weight outcomes, which are also associated with weight outcomes in an independent cohort suggesting a strong relationship with weight trajectories in the first six months after birth. Additionally, we developed a Methylation Risk Score (MRS) that could be used to identify children most at risk for developing childhood obesity. While many of the genes identified by our analysis have been associated with weight-related traits (e.g., glucose metabolism, BMI, or hip-to-waist ratio) in previous genome-wide association and variant studies, our analysis implicated several others, whose involvement in the obesity phenotype should be evaluated in future functional investigations.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Metilação de DNA / Obesidade Infantil Limite: Adult / Female / Humans / Infant / Male / Newborn / Pregnancy Idioma: En Revista: J Dev Orig Health Dis Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Metilação de DNA / Obesidade Infantil Limite: Adult / Female / Humans / Infant / Male / Newborn / Pregnancy Idioma: En Revista: J Dev Orig Health Dis Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos