Your browser doesn't support javascript.
loading
Bradykinin protects nucleus pulposus cells from tert-butyl hydroperoxide-induced damage and delays intervertebral disc degeneration.
Qiu, Xiaoming; Ma, Chongwen; Luo, Zhangbin; Zhang, Yibao; Kang, Jihe; Zhu, Daxue; Wang, Zhaoheng; Li, Lei; Wei, Ziyan; Wang, Zhuanping; Kang, Xuewen.
Afiliação
  • Qiu X; Department of Orthopedics, Lanzhou University Second Hospital, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Gansu provincial hospital of TCM (The First Affiliated Hospital of Gansu University of Chinese Medicine), Gansu University of Chinese Medicine, Lanzho
  • Ma C; Department of Orthopedics, Lanzhou University Second Hospital, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu 730000, China.
  • Luo Z; Department of Orthopedics, Lanzhou University Second Hospital, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu 730000, China.
  • Zhang Y; Department of Orthopedics, Lanzhou University Second Hospital, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu 730000, China.
  • Kang J; Department of Orthopedics, Lanzhou University Second Hospital, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu 730000, China.
  • Zhu D; Department of Orthopedics, Lanzhou University Second Hospital, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu 730000, China.
  • Wang Z; Department of Orthopedics, Lanzhou University Second Hospital, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu 730000, China.
  • Li L; Department of Orthopedics, Lanzhou University Second Hospital, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu 730000, China.
  • Wei Z; Department of Orthopedics, Lanzhou University Second Hospital, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu 730000, China.
  • Wang Z; Department of endocrinology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu 730000, China.
  • Kang X; Department of Orthopedics, Lanzhou University Second Hospital, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu 730000, China. Electronic address: ery_kangxw@lzu.edu.cn.
Int Immunopharmacol ; 134: 112161, 2024 Jun 15.
Article em En | MEDLINE | ID: mdl-38728878
ABSTRACT
Intervertebral disc degeneration (IVDD) is a leading cause of degenerative spinal disorders, involving complex biological processes. This study investigates the role of the kallikrein-kinin system (KKS) in IVDD, focusing on the protective effects of bradykinin (BK) on nucleus pulposus cells (NPCs) under oxidative stress. Clinical specimens were collected, and experiments were conducted using human and rat primary NPCs to elucidate BK's impact on tert-butyl hydroperoxide (TBHP)-induced oxidative stress and damage. The results demonstrate that BK significantly inhibits TBHP-induced NPC apoptosis and restores mitochondrial function. Further analysis reveals that this protective effect is mediated through the BK receptor 2 (B2R) and its downstream PI3K/AKT pathway. Additionally, BK/PLGA sustained-release microspheres were developed and validated in a rat model, highlighting their potential therapeutic efficacy for IVDD. Overall, this study sheds light on the crucial role of the KKS in IVDD pathogenesis and suggests targeting the B2R as a promising therapeutic strategy to delay IVDD progression and promote disc regeneration.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Bradicinina / Ratos Sprague-Dawley / Apoptose / Estresse Oxidativo / Terc-Butil Hidroperóxido / Degeneração do Disco Intervertebral / Núcleo Pulposo Limite: Animals / Female / Humans / Male Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Bradicinina / Ratos Sprague-Dawley / Apoptose / Estresse Oxidativo / Terc-Butil Hidroperóxido / Degeneração do Disco Intervertebral / Núcleo Pulposo Limite: Animals / Female / Humans / Male Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article