Your browser doesn't support javascript.
loading
Theoretical study on the structure, spectroscopic, and current-voltage behavior of 11-Cis and Trans retinal isomers in rhodopsin.
Hamedian, Amin; Vakili, Mohammad; Brandán, Silvia A; Akbari, Mahmood; Kanaani, Ayoub; Darugar, Vahidreza.
Afiliação
  • Hamedian A; Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91775-1436, Iran.
  • Vakili M; Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91775-1436, Iran. vakili-m@um.ac.ir.
  • Brandán SA; Cátedra de Química General, Instituto de Química, Inorgánica Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina.
  • Akbari M; UNESCO­UNISA-ITL Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.
  • Kanaani A; School of Chemistry, Damghan University, Damghan, 36716-41167, Iran.
  • Darugar V; Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91775-1436, Iran.
Sci Rep ; 14(1): 12452, 2024 May 30.
Article em En | MEDLINE | ID: mdl-38816529
ABSTRACT
In this study, the electronic transport properties of 11-Cis and Trans retinal, components of rhodopsin, were investigated as optical molecular switches using the nonequilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT). These isomers, which can be reversibly converted into each other, were examined in detail. The structural and spectroscopic properties, including infrared (IR), Raman, nuclear magnetic resonance (NMR), and ultraviolet (UV) spectra, were analyzed using the hybrid B3LYP/6-311 + + G** level of theory. Complete vibrational assignments were performed for both forms utilizing the scaled quantum mechanical force field (SQMFF) methodology. To evaluate the conductivity of these molecules, we utilized current-voltage (I-V) characteristics, transmission spectra, molecular projected self-consistent Hamiltonian (MPSH), HOMO-LUMO gap, and second-order interaction energies (E2). The trendline extrapolation of the current-voltage plots confirmed our findings. We investigated the effect of different electrodes (Ag, Au, Pt) and various connection sites (hollow, top, bridge) on conductivity. The Ag electrode with the hollow site exhibited the highest efficiency. Our results indicate that the Cis form has higher conductivity than the Trans form.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Irã

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Irã