Multi-spectral compatible metasurface with low infrared emissivity, independent microwave complex-amplitude control, and high visible transparency.
Opt Lett
; 49(11): 3174-3177, 2024 Jun 01.
Article
em En
| MEDLINE
| ID: mdl-38824356
ABSTRACT
With the rapid development of communication technology and detection technology, it is difficult for devices operating in a single spectrum to meet the application requirements of device integration and miniaturization, resulting in the exploration of multi-spectrum compatible devices. However, the functional design of different spectra is often contradictory and difficult to be compatible. In this work, a transparent slit circular metasurface with a high filling ratio is proposed to achieve the compatibility of microwave, infrared and visible light. In the microwave, based on the Pancharatnam-Berry phase theory, the continuous amplitude and binary phase can be customized only by rotating the slit angle to achieve an Airy beam function at 8-12â
GHz. In the infrared, the mean infrared emissivity is reduced to 0.3 at 3-14â
µm by maintaining high conductive filling ratio, and in visible light, based on the transparency of materials, the mean transmittance can achieve 50% at 400-800â
nm. All the results can verify the multi-spectral compatibility performance, which can also verify the validity of our design method. Importantly, the multi-spectral compatible metasurface contributes an option for multifunctional integration, which can be further applied in communication, camouflage, and other fields.
Texto completo:
1
Bases de dados:
MEDLINE
Idioma:
En
Revista:
Opt Lett
Ano de publicação:
2024
Tipo de documento:
Article