Your browser doesn't support javascript.
loading
Multi-spectral compatible metasurface with low infrared emissivity, independent microwave complex-amplitude control, and high visible transparency.
Opt Lett ; 49(11): 3174-3177, 2024 Jun 01.
Article em En | MEDLINE | ID: mdl-38824356
ABSTRACT
With the rapid development of communication technology and detection technology, it is difficult for devices operating in a single spectrum to meet the application requirements of device integration and miniaturization, resulting in the exploration of multi-spectrum compatible devices. However, the functional design of different spectra is often contradictory and difficult to be compatible. In this work, a transparent slit circular metasurface with a high filling ratio is proposed to achieve the compatibility of microwave, infrared and visible light. In the microwave, based on the Pancharatnam-Berry phase theory, the continuous amplitude and binary phase can be customized only by rotating the slit angle to achieve an Airy beam function at 8-12 GHz. In the infrared, the mean infrared emissivity is reduced to 0.3 at 3-14 µm by maintaining high conductive filling ratio, and in visible light, based on the transparency of materials, the mean transmittance can achieve 50% at 400-800 nm. All the results can verify the multi-spectral compatibility performance, which can also verify the validity of our design method. Importantly, the multi-spectral compatible metasurface contributes an option for multifunctional integration, which can be further applied in communication, camouflage, and other fields.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Opt Lett Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Opt Lett Ano de publicação: 2024 Tipo de documento: Article