Genome-wide meta-analyses of restless legs syndrome yield insights into genetic architecture, disease biology and risk prediction.
Nat Genet
; 56(6): 1090-1099, 2024 Jun.
Article
em En
| MEDLINE
| ID: mdl-38839884
ABSTRACT
Restless legs syndrome (RLS) affects up to 10% of older adults. Their healthcare is impeded by delayed diagnosis and insufficient treatment. To advance disease prediction and find new entry points for therapy, we performed meta-analyses of genome-wide association studies in 116,647 individuals with RLS (cases) and 1,546,466 controls of European ancestry. The pooled analysis increased the number of risk loci eightfold to 164, including three on chromosome X. Sex-specific meta-analyses revealed largely overlapping genetic predispositions of the sexes (rg = 0.96). Locus annotation prioritized druggable genes such as glutamate receptors 1 and 4, and Mendelian randomization indicated RLS as a causal risk factor for diabetes. Machine learning approaches combining genetic and nongenetic information performed best in risk prediction (area under the curve (AUC) = 0.82-0.91). In summary, we identified targets for drug development and repurposing, prioritized potential causal relationships between RLS and relevant comorbidities and risk factors for follow-up and provided evidence that nonlinear interactions are likely relevant to RLS risk prediction.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Síndrome das Pernas Inquietas
/
Predisposição Genética para Doença
/
Estudo de Associação Genômica Ampla
Limite:
Female
/
Humans
/
Male
Idioma:
En
Revista:
Nat Genet
Assunto da revista:
GENETICA MEDICA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Alemanha