Your browser doesn't support javascript.
loading
Environmental DNA metabarcoding reveals temporal dynamics but functional stability of arthropod communities in cattle dung.
Thomassen, Emil Ellegaard; Sigsgaard, Eva Egelyng; Jensen, Mads Reinholdt; Olsen, Kent; Hansen, Morten D D; Thomsen, Philip Francis.
Afiliação
  • Thomassen EE; Department of Biology, Aarhus University Denmark, Aarhus C, Denmark.
  • Sigsgaard EE; Department of Biology, Aarhus University Denmark, Aarhus C, Denmark.
  • Jensen MR; Department of Biology, Aarhus University Denmark, Aarhus C, Denmark.
  • Olsen K; Norwegian College of Fishery Science, UiT, The Arctic University of Norway, Tromsø, Norway.
  • Hansen MDD; Department of Research and Collections, Natural History Museum Aarhus, Aarhus C, Denmark.
  • Thomsen PF; Department of Research and Collections, Natural History Museum Aarhus, Aarhus C, Denmark.
J Anim Ecol ; 93(8): 1003-1021, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38864368
ABSTRACT
Terrestrial invertebrates are highly important for the decomposition of dung from large mammals. Mammal dung has been present in many of Earth's ecosystems for millions of years, enabling the evolution of a broad diversity of dung-associated invertebrates that process various components of the dung. Today, large herbivorous mammals are increasingly introduced to ecosystems with the aim of restoring the ecological functions formerly provided by their extinct counterparts. However, we still know little about the ecosystem functions and nutrient flows in these rewilded ecosystems, including the dynamics of dung decomposition. In fact, the succession of insect communities in dung is an area of limited research attention also outside a rewilding context. In this study, we use environmental DNA metabarcoding of dung from rewilded Galloway cattle in an experimental set-up to investigate invertebrate communities and functional dynamics over a time span of 53 days, starting from the time of deposition. We find a strong signal of successional change in community composition, including for the species that are directly dependent on dung as a resource. While several of these species were detected consistently across the sampling period, others appeared confined to either early or late successional stages. We believe that this is indicative of evolutionary adaptation to a highly dynamic resource, with species showing niche partitioning on a temporal scale. However, our results show consistently high species diversity within the functional groups that are directly dependent on dung. Our findings of such redundancy suggest functional stability of the dung-associated invertebrate community, with several species ready to fill vacant niches if other species disappear. Importantly, this might also buffer the ecosystem functions related to dung decomposition against environmental change. Interestingly, alpha diversity peaked after approximately 20-25 days in both meadow and pasture habitats, and did not decrease substantially during the experimental period, probably due to preservation of eDNA in the dung after the disappearance of visiting invertebrates, and from detection of tissue remains and cryptic life stages.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Artrópodes / Biodiversidade / Fezes / Código de Barras de DNA Taxonômico Limite: Animals Idioma: En Revista: J Anim Ecol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Dinamarca

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Artrópodes / Biodiversidade / Fezes / Código de Barras de DNA Taxonômico Limite: Animals Idioma: En Revista: J Anim Ecol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Dinamarca