Your browser doesn't support javascript.
loading
Preparation of novel sulfated polysaccharide-carboxymethyl-5-fluorouracil-folic acid conjugates for targeted anticancer drug delivery.
Ma, Nan; Li, Rong; You, SangGuan; Zhang, Dong-Jie.
Afiliação
  • Ma N; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Daqing Center of Inspection and Testing for Rural Affairs Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, China
  • Li R; Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea.
  • You S; Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea; East Coast Research Institute of Life Science, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea. Electronic address: umyousg
  • Zhang DJ; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Daqing Center of Inspection and Testing for Rural Affairs Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, China
Int J Biol Macromol ; 273(Pt 1): 133121, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38876229
ABSTRACT
GFP1, a sulfated polysaccharide extracted from Grateloupia filicina, exhibits remarkable immunomodulatory activity. To reduce the side effects of 5-fluorouracil (5-FU), GFP1 was employed as a macromolecular carrier to synthesize of GFP1-C-5-FU by reacting with carboxymethyl-5-fluorouracil (C-5-FU). Subsequently, this new compound was reacted with folic acid (FA) through an ester bond, forming novel conjugates named GFP1-C-5-FU-FA. Nuclear magnetic resonance analysis confirmed the formation of GFP1-C-5-FU-FA. In vitro drug release studies revealed that the cumulative release rate of C-5-FU reached 46.9 % in phosphate buffer (pH 7.4) after 96 h, a rate significantly higher than that of the control groups, indicating the controlled drug release behavior of GFP1-C-5-FU-FA. Additionally, in vitro anticancer assays demonstrated the potent anticancer activity of GFP1-C-5-FU-FA conjugates, as evidenced by the reduced viability of HeLa and AGS cancer cells, along with increased levels of apoptosis and cellular uptake. Western blot analysis indicated that the GFP1-C-5-FU-FA conjugate effectively enhanced phosphorylation in cancer cells through the NF-kB and MAPK pathways, thereby promoting apoptosis. These findings highlight the potential of folate-targeted conjugates in efficiently treating HeLa and AGS cancer cells in vitro and lay a robust theoretical groundwork for future in vivo anti-cancer research involving these cells.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Polissacarídeos / Fluoruracila / Ácido Fólico / Antineoplásicos Limite: Humans Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Polissacarídeos / Fluoruracila / Ácido Fólico / Antineoplásicos Limite: Humans Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China