Your browser doesn't support javascript.
loading
Mode of inheritance for pesticide resistance, importance and prevalence: A review.
Lu, Xue-Ping; Xu, Li; Wang, Jin-Jun.
Afiliação
  • Lu XP; Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
  • Xu L; Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
  • Wang JJ; Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China. Electronic address: wangjinjun@swu.edu.cn.
Pestic Biochem Physiol ; 202: 105964, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38879312
ABSTRACT
Pesticides remain a cornerstone in pest control, yet their extensive and irrational use also fuel the evolution of resistance. This review analyzes globally published experimental data spanning from the 1970s to 2023 to focus on how phenotypic and underlying genotypic variations are shaped during the selective response. The discussion commences with an examination of sex-linked/maternal resistance. Observations related to maternal inheritance have enriched our understanding of pesticide mode of action, notably exemplified by bifenazate. However, the predominant control of the resistant phenotype is attributed to autosomal traits, with a high prevalence of dominance and monogenic inheritance observed, also evident in field strains. This observation raises concerns regarding resistance management strategies due to their potential to accelerate the spread of resistance. The interplay between dominance levels and monogenic inheritance is further explored, with dominant traits being significantly more prevalent in polygenic inheritance. This observation may be attributed to the accumulation of enhanced metabolism. Notably, further analysis indicated that field strains exhibit a higher incidence of monogenic inheritance compared to other selected strains, aligning with established theoretical frameworks. In conclusion, the genetic architecture of resistance warrants increased research focus for its pivotal role in guiding resistance management strategies and advancing fundamental research.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Praguicidas Limite: Animals Idioma: En Revista: Pestic Biochem Physiol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Praguicidas Limite: Animals Idioma: En Revista: Pestic Biochem Physiol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China