Your browser doesn't support javascript.
loading
Sodium-Controlled Interfacial Resistive Switching in Thin Film Niobium Oxide for Neuromorphic Applications.
Gaggio, Benedetta; Jan, Atif; Muller, Moritz; Salonikidou, Barbara; Bakhit, Babak; Hellenbrand, Markus; Di Martino, Giuliana; Yildiz, Bilge; MacManus-Driscoll, Judith L.
Afiliação
  • Gaggio B; Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
  • Jan A; Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
  • Muller M; Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
  • Salonikidou B; Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
  • Bakhit B; Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
  • Hellenbrand M; Electrical Engineering Division, Department of Engineering, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
  • Di Martino G; Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden.
  • Yildiz B; Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
  • MacManus-Driscoll JL; Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
Chem Mater ; 36(11): 5764-5774, 2024 Jun 11.
Article em En | MEDLINE | ID: mdl-38883429
ABSTRACT
A double layer 2-terminal device is employed to show Na-controlled interfacial resistive switching and neuromorphic behavior. The bilayer is based on interfacing biocompatible NaNbO3 and Nb2O5, which allows the reversible uptake of Na+ in the Nb2O5 layer. We demonstrate voltage-controlled interfacial barrier tuning via Na+ transfer, enabling conductivity modulation and spike-amplitude- and spike-timing-dependent plasticity. The neuromorphic behavior controlled by Na+ ion dynamics in biocompatible materials shows potential for future low-power sensing electronics and smart wearables with local processing.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Chem Mater Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Chem Mater Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Reino Unido