Your browser doesn't support javascript.
loading
Intramolecular Hydrogen Bonding Based CEST MRI Contrast Agents As an Emerging Design Strategy: A Mini-Review.
Mohanta, Zinia; Gori, Sadakatali; McMahon, Michael T.
Afiliação
  • Mohanta Z; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.
  • Gori S; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland 21205, United States.
  • McMahon MT; Center for Translational Pharmacology, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States.
ACS Omega ; 9(26): 27755-27765, 2024 Jul 02.
Article em En | MEDLINE | ID: mdl-38973929
ABSTRACT
Intramolecular hydrogen bonding-based chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) contrast agents represent an innovative design strategy aiming to overcome limitations in diamagnetic CEST (diaCEST) MRI contrast agent specificity and also those associated with traditional metal-based MRI contrast agents. Ward and Balaban's proposal of small diamagnetic compounds marked a paradigm shift in contrast-based radiologic research, inspiring extensive investigations since 2000. These contrast agents leverage labile hydrogen bonds, serving as chemical exchange sites to induce saturation of water. The selective manipulation of radiofrequency (RF) allows for optimized signal contrast in soft tissue, with a significant signal amplification even at low probe concentrations, mitigating concerns about dose-dependent toxicities. This mini-review delves into the evolution of CEST MRI, its classification, and the strategic design principles of synthetic small molecules containing intramolecular hydrogen bonds. With a focus on applications and potential clinical relevance, the authors highlight the promising role of intramolecular hydrogen bonding-based CEST MRI in diverse medical contexts, especially renal imaging and pH mapping, paving the way for enhanced molecular imaging capabilities. Ongoing research endeavors aim to further optimize and expand the utility of these contrast agents, underscoring their transformative potential in clinical diagnostics and imaging.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos