Cooperative Phosphine-Photoredox Catalysis Enables N-H Activation of Azoles for Intermolecular Olefin Hydroamination.
J Am Chem Soc
; 146(29): 20349-20356, 2024 Jul 24.
Article
em En
| MEDLINE
| ID: mdl-38985548
ABSTRACT
Catalytic intermolecular olefin hydroamination is an enabling synthetic strategy that offers direct and atom-economical access to a variety of nitrogen-containing compounds from abundant feedstocks. However, despite numerous advances in catalyst design and reaction development, hydroamination of N-H azoles with unactivated olefins remains an unsolved problem in synthesis. We report a dual phosphine and photoredox catalytic protocol for the hydroamination of numerous structurally diverse and medicinally relevant N-H azoles with unactivated olefins. Hydroamination proceeds with high anti-Markovnikov regioselectivity and N-site selectivity. The mild conditions and high functional group tolerance of the reaction permit the rapid construction of molecular complexity and late-stage functionalization of bioactive compounds. N-H bond activation is proposed to proceed via polar addition of the N-H azole to a phosphine radical cation, followed by P-N α-scission from a phosphoranyl radical intermediate. Reactivity and N-site selectivity are classified by azole N-H BDFE and nitrogen-centered radical spin density, respectively, which can serve as a useful predictive aid in extending the reaction to unseen azoles.
Texto completo:
1
Bases de dados:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Estados Unidos