A Mechanistic Insight into the Acidic-stable MnSb2O6 for Electrocatalytic Water Oxidation.
ChemSusChem
; : e202400623, 2024 Jul 12.
Article
em En
| MEDLINE
| ID: mdl-38997233
ABSTRACT
The abundant, active, and acidic-stable catalysts for the oxygen evolution reaction (OER) are rare to the proton exchange membrane-based water electrolysis. Mn-based materials show promise as electrocatalysts for OER in acid electrolytes. However, the relationship between the stability, activity and structure of Mn-based catalysts in acidic environments remains unclear. In this study, phase-pure MnSb2O6 was successfully prepared and investigated as a catalyst for OER in a sulfuric acid solution (pH of 2.0). A comprehensive mechanistic comparison between MnSb2O6 and Mn3O4 revealed that the rate-determining step for OER on MnSb2O6 is the direct formation of MnIV=O from MnII-H2O by the 2H+/2e- process. This process avoids the rearrangement of adjacent MnIII intermediates, leading to outstanding stability and activity.
Texto completo:
1
Bases de dados:
MEDLINE
Idioma:
En
Revista:
ChemSusChem
Assunto da revista:
QUIMICA
/
TOXICOLOGIA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China